Dimer structure as topological pinning center in a superconducting sample
Published 2020-01-03
Keywords
- Ginzburg-Landau,
- mesoscopic,
- magnetization,
- vortices
How to Cite
Copyright (c) 2020 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
Solving the Ginzburg-Landau equations, we analyzed the vortex matter in a superconducting square with a Dimer structure of circular pinning centers generated by a pulsed heat source in the presence of an applied magnetic field. We numerically solved the Ginzburg-Landau equations in order to describe the effect of the temperature of the circular defects on the Abrikosov state of the sample. The pulsed laser produced a variation of the temperature in each defect. It is shown that an anomalous vortex-anti-vortex state (A-aV) appears spontaneously at higher magnetic fields. This could be due to the breaking of the symmetry of the sample by the inclusion of the thermal defects.
Downloads
References
[2] A. S. Melnikov, I. M. Nefedov, D. A. Ryzhov, I. A. Shereshevskii, V. M. Vinokur, and P. P. Vysheslavtsev, “Vortex states and magnetization curve of square mesoscopic superconductors,” Phys. Rev. B, no. 65(R), pp. 140501-140503,140503-140504, 2002.
[3] R. Geurts M. V. Milošević and F. M. Peeters, “Symmetric and Asymmetric Vortex-Antivortex Molecules in a Fourfold Superconducting Geometry,” Phys. Rev. Lett., no. 97, pp. 137001-137002,137002-137004, 2006.
[4] E. S. J. Barba-Ortega and J. A. Aguiar, “Superconducting boundary conditions for mesoscopic circular samples,” Supercond. Sci. Technol., no. 24, pp. 15001,15001-15007, 2011.
[5] B. Maiorov, S. A. Baily, H. Zhou, O. Ugurlu, J. A. Kennison, P. C. Dowden, T. G. Holesinger, S. R. Foltyn, and L. Civale, “To use or not to use cool superconductors?,” Nat. Matter, vol. 8, p. 398,404, 2009.
[6] W. T. Silfvast, Laser Fundamentals. Cambridge: Cambridge University Press, 2004.
[7] M. Csele, Fundamentals of Light Sources and Lasers. New Jersey: John Wiley and Sons, 2011.
[8] M. Allmen and A. Blatter, Laser-Beam Interactions with Materials: Physical Principles and Applications. Berlin, Heidelberg: Springer Series in Materials Science, 2013.
[9] Alexey V. Ovcharov, Pavel N. Degtyarenko, Vsevolod N. Chepikov, Alexander L. Vasiliev, Sergey Yu. Gavrilkin, Igor A. Karateev, Alexey Yu. Tsvetkov and Andrey R. Kaul, “Microstructure and superconducting properties of high-rate PLD-derived GdBa_2Cu_3O_{7-δ} coated conductors with BaSnO_3 and BaZrO_3 pinning centers,” Sci. Rep., vol. 9, pp. 15231-15235,15235-15237, 2019.
[10] L. Ceccarelli, D. Vasyukov, M. Wyss, G. Romagnoli, N. Rossi, L. Moser, and M. Poggio, “Imaging pinning and expulsion of individual superconducting vortices in amorphous MoSi thin films,” Phys. Rev. B, vol. 100, pp. 104501-104504,104504-104509, 2019.
[11] M. T. Li,Y. F. Fang, Z. Sun. J. C. Zhang, and C. T. Lin, “Evidence for weak collective pinning and δl pinning in topological superconductor Cu_xBi_2Se_3,” J. Phys. Condens. Matter, vol. 100, pp. 104501-104504,104504-104509, 2018.
[12] J. L. MacManus-Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M. E. Hawley, M. P. Maley, D. E. Peterson, “Strongly enhanced current densities in superconducting coated conductors of YBa_2Cu_3O_{7-x} + BaZrO_3,” Nat. Matter, vol. 3, p. 439,443, 2004.
[13] R. B. G. Kramer, A. V. Silhanek, W. Gillijns, V. V. Moshchalkov, “Imaging the Statics and Dynamics of Superconducting Vortices and Antivortices Induced by Magnetic Microdisks,” Phys. Rev. X, no. 1, pp. 21001-21004,21004-21007, 2011.
[14] J. S. León M. R. Joya and J. Barba-Ortega, “IKagome–Honeycomb structure produced using a wave laser in a T conventional superconductor,” Optik (Stuttg)., no. 172, p. 311,316, 2018.
[15] A. He C. Xue and Y.-H. Zhou, “The ice-like vortex states in a nanostructured superconducting film with a dice lattice of elongated antidots,” AIP Adv., no. 8, pp. 85201-85208,85208, 2018.
[16] V. Kapaklis, U. B. Arnalds, A. Farhan, R. V. Chopdekar, A. Balan, A. Scholl, L. J. Heyderman, and B. Hjorrvarsson, “Thermal fluctuations in artificial spin ice,” Nat. Commun., vol. 9, pp. 514–519, 2014.
[17] A. Farhan, A . Scholl, C. F. Petersen, L. Anghinolfi, C. Wuth, S. Dhuey, R. V. Chopdekar, P. Mellado, M. J. Alava, and S. Dijken, “Thermodynamics of emergent magnetic charge screening in artificial spin ice,” Nat. Commun., vol. 7, pp. 12631-12635,12635-12636, 2016.
[18] S. E. Korshunov, “Vortex ordering in fully frustrated superconducting systems with a dice lattice,” Phys. Rev. B, no. 63, pp. 134501-134503,134503-134505, 2001.
[19] C. Xue, J. Y. Ge, A. He, V. S. Zharinov, V. V. Moshchalkov, Y. H. Zhou, A. V. Silhanek, and J. Van de Vondel, “Tunable artificial vortex ice in nanostructured superconductors with a frustrated kagome lattice of paired antidots,” Phys. Rev. B, no. 97, pp. 134501-134506,134506-134507, 2018.
[20] C. Xue, J. Y. Ge, A. He, V. S. Zharinov, V. V. Moshchalkov, Y. H. Zhou, A. V. Silhanek, and J. Van de Vondel, “Mapping degenerate vortex states in a kagome lattice of elongated antidots via scanning Hall probe microscopy,” Phys. Rev. B, no. 96, pp. 24510-24511,24510-24516, 2017.
[21] J. Barba-Ortega, J. L. Aguilar, and J. D. González, “Unconventional anti-vortex spontaneous generation in a superconducting microstructure,” Mod. Phys. Lett. B, vol. 29, no. 14, p. 1550070, May 2015.
[22] J. M. Kosterlitz and D. J. Thouless, “Ordering, metastability and phase transitions in two-dimensional systems,” J. Phys. C, no. 6, p. 1181,1203, 1973.
[23] D. J. Bishop and J. Reppy, “Study of the Superfluid Transition in Two-Dimensional 4He Films,” Phys. Rev. Lett., no. 40 (1727), p. 5171,5185, 1978.
[24] V. R. Misko, V. M. Fomin, J. T. Devreese and V. V. Moshchalkov, “Stable Vortex-Antivortex Molecules in Mesoscopic Superconducting Triangles,” Phys. Rev. Lett., no. 90, pp. 147001-147003,147003-147004, 2003.
[25] A. Andronov, I. Gordion, V. Kurin, I. Nefedov, and I. Shereshevsky, “Kinematic vortices and phase slip lines in the dynamics of the resistive state of narrow superconductive thin film channels,” Phys. C, no. 213, p. 193,199, 1993.
[26] L. Kramer and R. J. Watts-Tobin, “Theory of Dissipative Current-Carrying States in Superconducting Filaments,” Phys. Rev. Lett., no. 40, p. 1041,1044, 1978.
[27] J. Watts-Tobin, Y. Krähenbühl, and L. Kramer, “Nonequilibrium theory of dirty, current-carrying superconductors: phase-slip oscillators in narrow filaments near T_c,” J. Low Temp. Phys., no. 42, pp. 459–501, 1981.
[28] D. Y. Vodolazov, F. M. Peeters, M. Morelle, and V. V. Moshchalkov, “Masking effect of heat dissipation on the current-voltage characteristics of a mesoscopic superconducting sample with leads,” Physical Review B, no. 71, pp. 184502-1,184502-8, 2005
[29] M. V. Milošević and R. Geurts, “The Ginzburg–Landau theory in application,” Phys. C Supercond., vol. 470, no. 19, pp. 791–795, Oct. 2010.
[30] C. A. Aguirre, Q. Martins and J. Barba-Ortega, “Desarrollo analítico de las ecuaciones Ginzburg-Landau para películas delgadas superconductoras en presencia de corrientes,” Rev. UIS Ing., no. 18(2), p. 213,220, 2019.
[31] W. D. Gropp, H. G. Kaper, G. K. Leaf, D. M. Levine, M. Palumbo and V. M. Vinokur,” J. Comuptational Physcis, no. 123, p. 254,266, 1996.
[32] G. C. Buscaglia, C. Bolech and A. Lopez, Connectivity and Superconductivity. J. Rubinstein, Heidelberg: Springer, 2000.
[33] C. Buscaglia and A. Lopez, Nanoscience and Engineering in Superconductivity. Eds V. V. Moshchalkov, R. Woerdenweber and W. Lang, Springer, 2010.
[34] C. P. Jr, Handbook of Superconductivity. San Diego, USA: Academic Press, 2000.