Vol. 19 No. 1 (2020): Revista UIS Ingenierías
Articles

Copper and iron oxide films deposited in Titanium Nanotubes

Leydi Cardenas-Flechas
Universidad Nacional de Colombia
Jose Jose Barba-Ortega
Universidad Nacional de Colombia
Miryam R. Joya
Universidad Nacional de Colombia

Published 2020-01-03

Keywords

  • anodizing,
  • spin coating,
  • nanotubes,
  • TiO2

How to Cite

Cardenas-Flechas, L., Barba-Ortega, J. J., & Joya, M. R. (2020). Copper and iron oxide films deposited in Titanium Nanotubes. Revista UIS Ingenierías, 19(1), 171–178. https://doi.org/10.18273/revuin.v19n1-2020016

Abstract

A tubular TiO2 / Ti matrix obtained by the electrochemical anodization method was used as a substrate for the deposit of a single litter of CuO (copper oxide) or CuO doped with 1% Fe by the spin coating method. In the anodizing methods two different times of 40 and 60 minutes were used respectively. In obtaining the anatase structure of TiO2, the samples obtained by anodization were calcined at 450 ° C and subsequently the copper oxide layer was deposited. In this study the structural properties were investigated by means of morphological x-rays by SEM measurements and optical properties through UV-Vis, Auger and Raman spectroscopy. In the X-ray measurements, the anatase phase is observed with secondary phases corresponding to the CuO. In SEM the uniform coating is observed for the method sample 2 to 60 minutes with CuO / Fe. In the measurements of Raman spectroscopy after calcination of the samples, the vibrational modes of TiO2 are obtained. In the Auger measurements, they indicated the presence of titanium in the Auger (L2M2,3M2,3) and (L2M2,3M4,5) transitions, located at 387eV and 418eV as well as Fe, O, C. Finally, our results suggest that TiO2 support -nanotubes / Ti with a CuO tank is promising for possible applications such as electrode.

Downloads

Download data is not yet available.

References

[1] J. Yu, H. Yu, B. Cheng, C. Trapalis, “Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes,” J. Mol. Catal. A: Chem., vol. 249, no 1-2, pp. 135-142, 2006. doi: 10.1016/j.molcata.2006.01.003

[2] P. Roy, S. Berger, P. Schmuki, “TiO2 nanotubes: synthesis and applications,” Chem. Int, vol. 50 no. 13, pp. 2904-2939, 2011.

[3] X. Wang, K. Cheng, S. Dou, Q. Chen, J. Wang, Z. Song, and H. Song, “Enhanced photoelectrochemical performance of CdO-TiO2 nanotubes prepared by direct impregnation,” Appl Surf Sci, vol. 476, pp. 136-143, 2019. doi: 10.1016/j.apsusc.2019.01.044

[4] L. Long, J. Li, L. Wu, y X. Li, “Enhanced photocatalytic performance of platinized CdS/TiO2 by optimizing calcination temperature of TiO2 nanotubes,” Mat Sci Semicon Proc, vol. 26 no. 1, pp. 107–111. 2014.

[5] S. Nagamine, y K. Inohara, “Photocatalytic microreactor using anodized TiO2nanotube array,” Adv Powder Technol, vol. 29, no 12, pp. 3100-3106, 2018.

[6] Z. Liu, Q. Wang, Y. Cui, Z. Zhang, y S. Gao, “Constructing AgBr/BiOBr microspheres assembled by nanosheets on TiO2nanotube arrays,” Sep Purif Technol, vol. 209, pp. 343–350, 2019. doi: 0.1016/j.seppur.2018.07.047

[7] X. Ma, Z. Sun, y X. Hu, “Synthesis of tin and molybdenum co-doped TiO2nanotube arrays for the photoelectrocatalytic oxidation of phenol in aqueous solution,” Mat Sci Semicon Proc, vol 85, pp. 150–159, 2018. doi: 10.1016/j.mssp.2018.05.026

[8] A. Ghicov, P. Schmuki, “Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures,” ChemComm, vol. 20, pp. 2791-2808, 2009.

[9] S. Albu, A. Ghicov, S. Aldabergenova, P. Drechsel, D. LeClere, G. Thompson, P. Schmuki, “Formation of double‐walled TiO2 nanotubes and robust anatase membranes,” Adv. Mater, vol. 20 no. 21, pp. 4135-4139, 2008.

[10] M. Sander, M. Cote, W. Gu, B. Kile, C. Tripp, “Template‐assisted fabrication of dense, aligned arrays of titania nanotubes with well‐controlled dimensions on substrates,” Adv. Mater, vol.16 no. 22, pp. 2052-2057, 2004.

[11] R. Hahn, T. Stergiopoulus, J. Macak, D. Tsoukleris, A. Kontos, S. Albu, P. Schmuki, “Efficient solar energy conversion using TiO2 nanotubes produced by rapid breakdown anodization–a comparison,” Phys Status Solidi-R, vol. 1 no. 4, pp. 135-137, 2007.

[12] M. Razali, M. Ahmad-Fauzi, A. Mohamed, S. Sreekantan, “Morphological structural and optical properties study of transition metal ions doped TiO2 nanotubes prepared by hydrothermal method,” Int. J. Mater. Mech. Manuf., vol. 1, no 4, pp. 314-318, 2013.

[13] J. Meyerink, D. Kota, S. Wood, G. Crawford, “Transparent titanium dioxide nanotubes: Processing, characterization, and application in establishing cellular response mechanisms,” Acta Biomater., vol. 79, pp. 364-374, 2018. doi: 10.1016/j.actbio.2018.08.039

[14] M. Hasanzadeh Kafshgari, A. Mazare, M. Distaso, W. Goldmann, W. Peukert, B. Fabry, P. Schmuki, “Intracellular Drug Delivery With Anodic Titanium Dioxide Nanotubes and Nanocylinders,” ACS Appl. Mater. Interfaces, vol. 11, no 16, pp. 14980-14985, 2019.

[15] Y. Pang, S. Lim, H. Ong, W. Chong, “Synthesis, characteristics and sonocatalytic activities of calcined γ-Fe2O3 and TiO2 nanotubes/γ-Fe2O3 magnetic catalysts in the degradation of Orange G.,” Ultrason sonochem, vol. 29, pp 317-327, 2016.

[16] R. López, R. Gómez, M. Llanos, “Photophysical and photocatalytic properties of nanosized copper-doped titania sol–gel catalysts,” Catalysis Today, vol. 148 no. 1-2, pp. 103-108, 2009.

[17] A. Kontos, V. Likodimos, T. Stergiopoulos, D. Tsoukleris, P. Falaras, I. Rabias, P. Schmuki, “Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles,” Chem. Mater, 21 no. 4, pp. 662-672, 2009.

[18] H. Mateus, J. Barba y M.R. Joya, “Comparison of the growth of TiO2 nanotubes in different solutions,” J. Inorg Organomet, vol. 28 no. 3, pp. 612-623 2018. Doi: 10.1007/s10904-018-0783-1

[19] M. Momeni, Y. Ghayeb, y Z. Ghonchegi, “Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst,” Ceram. Int, vol. 41 no. 7, pp. 8735-8741, 2015

[20] R. Gao, Z. Yang, L. Zheng, L.Gu, L. Liu, Y. Lee, y Liu, X. “Enhancing the catalytic activity of Co3O4 for Li–O2 batteries through the synergy of surface/interface/doping engineering,” ACS Catal. Vol. 8 no. 3, pp. 1955-1963, 2018. Doi: 10.1021/acscatal.7b03566.

[21] A. Kontos, V. Likodimos, T. Stergiopoulos,D. Tsoukleris, P. Falaras, I. Rabias, P. y Schmuki, “Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles” Chem Mater, vol. 21 no.4, pp. 662-672, 2009

[22] Y. Pang, S. Lim, H. Ong, C y W. Chong, “Synthesis, characteristics and sonocatalytic activities of calcined γ-Fe2O3 and TiO2 nanotubes/γ-Fe2O3 magnetic catalysts in the degradation of Orange G,” Ultrason Sonochem, vol. 29, pp. 317-327, 2016. doi: 10.1016/j.ultsonch.2015.10.003

[23] M. Silva, A. Hechenleitner, D. de Oliveira, M. Agüeros, R. Peñalva, J. Irache, y E. Pineda, “Optimization of maghemite-loaded PLGA nanospheres for biomedical applications,” ‎Eur. J. Pharm. Biopharm, vol. 49 no. 3, pp. 343-351, 2013. doi: 10.1016/j.ejps.2013.04.006

[24] L. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowsk, A. K. Kaliszewska, J. Grobelny y P. Wojciechowski, “Dielectric Properties and Characterisation of Titanium Dioxide Obtained by Different Chemistry Method,” Journal of Nanomaterials, vol. 2014, pp 9, 2014.

[25] M R Joya, J. Barba-Ortega, E. C. Paris, “Obtaining samples of oxides at low cost,” Rev. UIS Ing. vol. 18 no. 3, pp. 33–38. 2019. doi: 10.18273/revuin.v18n3-2019003

[26] Č. Jovalekić, M. Zdujić, y L. Atanasoska, “Surface analysis of bismuth titanate by Auger and X-ray photoelectron spectroscopy,” J. Alloys Compd, vol. 469 no. 1–2, pp. 441–444. 2009.

[27] C. J. Powell, “Recommended Auger parameters for 42 elemental solids”, J Electron Spectrosc, vol. 185 no.1–2, pp. 1–3, 2012.

[28] J. Parra, O. Piamba, J.J. Olaya, “Resistencia a la corrosión a alta temperatura en películas delgadas de BixTiyOz producidas por sputtering,” Rev. LatinAm. Metal. Mat., vol. 36, no.1, pp. 2-8, 2016