Vol. 19 No. 1 (2020): Revista UIS Ingenierías
Articles

Four-quadrant control of a complete bridge inverter connected to the power grid

Juan David Bastidas
Universidad Nacional de Colombia
Carlos Andrés Ramos-Paja
Departamento de Energía Eléctrica y Automática, Universidad Nacional de Colombia
Bio
Andrés Juilán Saavedra-Montes
Departamento de Energía Eléctrica y Automática, Universidad Nacional de Colombia
Bio

Published 2020-01-03

Keywords

  • hysteresis control,
  • inverter,
  • rectifier,
  • bidirectional,
  • four quadrant,
  • complex power
  • ...More
    Less

How to Cite

Bastidas, J. D., Ramos-Paja, C. A., & Saavedra-Montes, A. J. (2020). Four-quadrant control of a complete bridge inverter connected to the power grid. Revista UIS Ingenierías, 19(1), 117–130. https://doi.org/10.18273/revuin.v19n1-2020012

Abstract

Energy storage systems are key elements in microgrids to control stability in the magnitude of voltage and frequency. The energy storage systems are connected to the micro network by means of bidirectional inverters whose complex output power can be in any of the four quadrants and is defined by a high level control. This article presents a hysteresis control system for a single-phase inverter with inductive filter connected to the network that allows obtaining complex power in any of the four quadrants. The control system is composed of an internal hysteresis current control loop and a method to calculate the current reference from the desired active and reactive powers. The current reference may be advanced or delayed with respect to the grid voltage, to operate in the four quadrants, and may have different magnitude values, to obtain different apparent power values. The inverter and the control system are implemented in the PSIM software to verify its correct operation. The results shown that it is possible to obtain different values of apparent power in any of the four quadrants of the complex plane.

Downloads

Download data is not yet available.

References

[1] A. K. Raturi, “Renewables 2016 Global Status Report,” 2016.

[2] International Energy Agency, “Tracking Clean Energy Progress 2017,” 2017.

[3] N. Hatziargyriou, Microgrids Architectures and Control. Chichester: John Wiley & Sons Ltd, 2014.

[4] M. S. Mahmoud and F. M. AL-Sunni, Control and Optimization of Distributed Generation Systems. New York: Springer, 2010.

[5] N. Hatziargyriou, Microgrids: Architectures and Control. West Sussex, 2014.

[6] J. D. Bastidas-Rodríguez and C. A. Ramos-Paja, “Types of inverters and topologies for microgrid applications,” Rev. UIS Ing., vol. 16, no. 1, pp. 7–14, 2017. doi: 10.18273/revuin.v16n1-2017001

[7] S. M. Sharkh, M. A. Abusara, G. I. Orfanoudakis, and B. Hussain, Power Electronic Converters for Microgrids. Singapore: JohnWiley & Sons, 2014.

[8] “Powerwall,” Tesla, 2017. [En línea]. Disponible en: https://www.tesla.com/powerwall.

[9] “LG Chem,” LG, 2017. [En línea]. Disponible en: http://www.lgchem.com/global/ess/ess/product-detail-PDEC0001.

[10] “Sunny Boy Storage 2.5,” SMA, 2017. [En línea]. Disponible en: https://www.sma.de/en/products/battery-inverters/sunny-boy-storage-25.html.

[11] H. Athari, M. Niroomand, and M. Ataei, “Review and Classification of Control Systems in Grid-tied Inverters,” Renew. Sustain. Energy Rev., vol. 72, pp. 1167–1176, 2017. doi: 10.1016/j.rser.2016.10.030

[12] M. Saputra, Y. Prabowo, and P. A. Dahono, “A control method for single-phase bidirectional converters,” en 2014 International Symposium on Technology Management and Emerging Technologies, 2014, pp. 19–24. doi: 10.1109/ISTMET.2014.6936470

[13] P. A. Dahono, “New hysteresis current controller for single-phase full-bridge inverters,” IET Power Electron., vol. 2, no. 5, pp. 585–594, 2009. doi: 10.1049/iet-pel.2008.0143

[14] D. M. Mohan, B. Singh, and B. K. Panigrahi, “A new control strategy for active and reactive power control of three-level VSC based HVDC system,” en 2010 Annual IEEE India Conference (INDICON), 2010, pp. 1–4. doi: 10.1109/INDCON.2010.5712630

[15] E. R. Priandana, M. Saputra, Y. Prabowo, and P. A. Dahono, “Analysis and design of variable double-band hysteresis current controller for single-phase full-bridge bidirectional converters,” en 2014 International Symposium on Technology Management and Emerging Technologies, 2014, pp. 143–148. doi: 10.1109/ISTMET.2014.6936495

[16] C. M. Liaw, T. H. Chen, T. C. Wang, G. J. Cho, C. M. Lee, and C. T. Wang, “Design and implementation of a single phase current-forced switching mode bilateral convertor,” en IEE Proc. B - Electr. Power Appl., vol. 138, no. 3, pp. 129–136, 1991. doi: 10.1049/ip-b.1991.0016

[17] B. I. Rani, G. S. Ilango, C. Nagamani, and P. S. Rao, “Control strategy for a single phase bidirectional converter based UPS system using FPGA,” en 2012 International Conference on Power, Signals, Controls and Computation, 2012, pp. 1–6. doi: doi: 10.1109/EPSCICON.2012.6175245

[18] E. M. Suhara, M. Nandakumar, and K. Mathew, “Novel adaptive hysteresis current control of bidirectional three phase PWM converter under reduced switching scheme,” en 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2016, pp. 1–6. doi: 10.1109/PEDES.2016.7914452

[19] P. V. Subramanyam and C. Vyjayanthi, “Integration of PV and battery system to the grid with power quality improvement features using bidirectional AC-DC converter,” en 2016 International Conference on Electrical Power and Energy Systems (ICEPES), 2016, pp. 127–132. doi: 10.1109/ICEPES.2016.7915918

[20] S. B. Karanki and D. Xu, “NPC based dual active bridge topology for integrating battery energy storage to utility gird,” en 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), 2014, pp. 1–6. doi: 10.1109/CCECE.2014.6901151

[21] M. Bobrowska-Rafal, K. Rafal, M. Jasinski, and M. P. Kazmierkowski, “Grid synchronization and symmetrical components extraction with PLL algorithm for grid connected power electronic converters - A review,” Bull. Polish Acad. Sci. Tech. Sci., vol. 59, no. 4, pp. 485–497, 2011. doi: 10.2478/v10175-011-0060-8

[22] S. Golestan, J. M. Guerrero, F. Musavi, and J. C. Vasquez, “Single-phase frequency-locked loops: A comprehensive review,” IEEE Trans. Power Electron., vol. 34, no. 12, pp. 11791–11812, 2019. doi: 10.1109/TPEL.2019.2910247

[23] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2a ed. New York: Kluwer Academic Publishers, 2001.

[24] S. Dalapati, C. Chakraborty, and S. Bhattacharya, “Single phase, full bridge, Controlled Capacitor Charging (CCC) type inverter,” en 2006 IEEE International Conference on Industrial Technology, 2006, pp. 265–270. doi: 10.1109/ICIT.2006.372277

[25] J. Pablo, V. Ceballos, D. G. Montoya, S. I. Serna-garc, J. David, and C. A. Ramos-paja, “Charger/discharger DC/DC converter with interleaved configuration for DC-bus regulation and battery protection,” Energy Sci. Eng., vol. 00, pp. 1–10, 2019. doi: 10.1002/ese3.534

[26] C. A. Ramos-Paja, J. D. Bastidas-Rodríguez, D. González, S. Acevedo, and J. Peláez-Restrepo, “Design and Control of a Buck–Boost Charger-Discharger for DC-Bus Regulation in Microgrids,” Energies, vol. 10, no. 11, pp. 1–26, 2017. doi: 10.3390/en10111847

[27] R. Sarrias, L. M. Fernández, C. A. García, and F. Jurado, “Coordinate operation of power sources in a doubly-fed induction generator wind turbine / battery hybrid power system,” J. Power Sources, vol. 205, pp. 354–366, 2012. doi: 10.1016/j.jpowsour.2012.01.005

[28] N. Eghtedarpour and E. Farjah, “Control strategy for distributed integration of photovoltaic and energy storage systems in DC micro-grids,” Renew. Energy, vol. 45, pp. 96–110, 2012. doi: 10.1016/j.renene.2012.02.017

[29] C. N. Papadimitriou, E. I. Zountouridou, and N. D. Hatziargyriou, “Review of hierarchical control in DC microgrids,” Electr. Power Syst. Res., vol. 122, pp. 159–167, May 2015. doi: 10.1016/j.epsr.2015.01.006

[30] S. Y. Yu, H. J. Kim, J. H. Kim, and B. M. Han, “SoC-based output voltage control for BESS with a lithium-ion battery in a stand-alone DC microgrid,” Energies, vol. 9, no. 11, 2016. doi:10.3390/en9110924

[31] J. Baek, W. Choi, and S. Chae, “Distributed Control Strategy for Autonomous Operation of Hybrid AC/DC Microgrid,” Energies, vol. 10, no. 3, p. 373, 2017. doi: 10.3390/en10030373

[32] A. J. Saavedra-Montes, J. M. Ramirez-Scarpetta, C. A. Ramos-Paja, and O. P. Malik, “Identification of excitation systems with the generator online,” Electr. Power Syst. Res., vol. 87, pp. 1–9, 2012. doi: 10.1016/j.epsr.2012.01.005

[33] A. Jana, P. K. Gayen, P. K. Dhara, and R. Garai, “Simultaneous active and reactive power control of single-phase grid connected battery storage system,” en Proceedings of 2nd International Conference on 2017 Devices for Integrated Circuit, DevIC 2017, 2017, pp. 289–293. doi: 10.1109/DEVIC.2017.8073954

[34] C. Shen, Z. Yang, M. L. Crow, and S. Atcitty, “Control of STATCOM with energy storage device,” en 2000 IEEE Power Engineering Society, Conference Proceedings, 2000, pp. 2722–2728. doi: 10.1109/PESW.2000.847313

[35] X. Zhang, M. Hao, F. Liu, C. Yu, and W. Zhao, “Analysis and control of energy storage systems in microgrid,” Proc. - 2012 Int. Conf. Intell. Syst. Des. Eng. Appl. ISDEA 2012, pp. 1375–1379, 2012. doi: 10.1109/ISdea.2012.529

[36] M. Ovaskainen, J. Öörni, and A. Leinonen, “Superposed control strategies of a BESS for power exchange and microgrid power quality improvement,” in Proceedings - 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2019, 2019, pp. 3–8. doi: 10.1109/EEEIC.2019.8783764

[37] Z. Ma, L. Li, and T. Dong, “Application of a combined system to enhance power quality in an island microgrid,” in PEAM 2011 - Proceedings: 2011 IEEE Power Engineering and Automation Conference, 2011, pp. 326–330. doi: 10.1109/PEAM.2011.6135104

[38] “Powersimtech,” PSIM, 2016. [En línea]. Disponible en: https://powersimtech.com.