Half-metallic electronic feature and thermophysical properties of the Ba2CoMoO6 perovskite-like cobalt molybdate
Published 2020-01-04
Keywords
- complex perovskite,
- half-metallicity,
- electronic structure,
- equilibrium properties
How to Cite
Copyright (c) 2020 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
Perovskite-like materials which include magnetic elements have relevance due to the technological perspectives in the spintronics industry. In this work, the magnetic, structural and electronic properties of the Ba2CoMoO6 double perovskite are investigated. Calculations are carried out through the Full-Potential Linear Augmented Plane Wave method within the framework of the Density Functional Theory with exchange and correlation effects in the Generalized Gradient and Local Density approximations, including spin polarization. From the minimization of energy as a function of volume using Murnaghan’s state equation the equilibrium lattice parameter and cohesive properties of this compound were obtained. The study of the electronic structure was based in the analysis of the electronic density of states, and the band structure, showing that this compound evidences a conductive character for a spin channel and insulation for the other, and presents an integer value for the effective magnetic moment (3.0 μB), which allows it to be classified as a half-metallic material. The effects of pressure and temperature on thermophysical properties such as specific heat, Debye temperature, coefficient of thermal expansion and the Grüneisen parameter were calculated and analyzed from the state equation of the system. Obtained results reveal that, in the low-temperature regime, the specific heat at constant volume and pressure presents an analogous behavior to each other, with a tendency to the limit of Dulong-Petit typical of the structures of cubic perovskite-type, showing a value of 246.3 J/mol.K at constant volume and slightly higher values at constant pressure. The dependence of the thermal expansion coefficient, the temperature of Debye and the Grüneisen parameter with the increase in temperature are discussed in relation to other perovskite-like materials.
Downloads
References
[2] L. Alff, in Electron Correlation in New Materials and Nanosystems, K. Scharnberg, S. Kruchinin (Eds.), NATO Science Series II 241, pp. 393-400, 2007.
[3] H. Sakakima, M. Satomi, E. Hirota, H. Adachi, “Spin-valves using perovskite antiferromagnets as the pinning layers”, IEEE Transact. Magn. vol. 35, no. 5, pp. 2958 – 29608, 1999. doi: 10.1109/20.801046
[4] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, “Magnetic control of ferroelectric polarization”, Nature, vol 426, no. 6962 pp. 55-58, 2003. doi: 10.1038/nature02018
[5] J. M. De Teresa, J. M. Michalik, J. Blasco, P. A. Algarabel, M. R. Ibarra, C. Kapusta, U. Zeitler, “Magnetization of Re-based double perovskites: Noninteger saturation magnetization disclosed”, Appl. Phys. Lett. Vol. 90, 252514, 2007. doi: 10.1063/1.2751127
[6] L. Balcells, R. Enrich, A. Calleja, J. Sourcecuberta, X. Obradors, “Designing and testing of a sensor based on magneto resistive manganese perovskite thin film”, J. Appl. Phys. Vol. 80, no. 8, pp. 4298-4300, 1997. doi: 10.1063/1.364808
[7] Y. Mao, J. Parsons, J. S. McCloy, “Magnetic properties of double perovskite La2BMnO6 (B = Ni or Co) nanoparticles”, Nanoscale, vol. 5, no. 11, pp. 4720-4728, 2013. doi: 10.1039/c3nr00825h
[8] M. Bonilla, D.A. Landínez Téllez, J. Arbey Rodríguez, J. Albino Aguiar, J. Roa-Rojas, “Study of half-metallic behavior in Sr2CoWO6 perovskite by ab initio DFT calculations”, J. Magn. Magn. Mater. Vol. 320, no. 14, pp. e397-e399, 2008. doi: 10.1016/j.jmmm.2008.02.179
[9] S.A. Dar, V. Srivastava, U.K. Sakalle, “Temperature and pressure dependent electronic, mechanical and thermal properties of f-electron based ferromagnetic barium neptunate”, Chin. J. Phys., vol. 55, no. 5, pp. 1769-1779, 2017. doi: 10.1016/j.cjph.2017.08.002
[10] C.E. Deluque Toro, D.A. Landínez Téllez, J. Roa-Rojas, “Ab-initio analysis of magnetic, structural, electronic and thermodynamic properties of the Ba2TiMnO6 manganite,” Dyna vol. 85, no. 205, pp. 27-36, 2018. doi: 10.15446/dyna.v85n205.68517
[11] F. Guyot, Y. Wang, P. Gillet, Y. Ricard, “Quasi-harmonic computations of thermodynamic parameters of olivines at high-pressure and high-temperature. A comparison with experiment data”, Phys. Earth Planet. Int. vol. 98, no. 1-2, pp. 17-29, 1996.
[12] M. Bibes, A. Barthelemy, “Oxide spintronics”, IEEE Trans. Elec. Dev. Vol. 54, no. 5, pp. 1003-1022, 2007.
[13] Y-H. Huang, G. Liang, M. Croft, M. Lehtimäki, M. Karppinen, J.B. Goodenough, “Double-Perovskite Anode Materials Sr2MMoO6 (M = Co, Ni) for Solid Oxide Fuel Cells,” Chem. Mater., vol. 21, no. 11, pp. 2319-2326, 2009. doi: 10.1021/cm8033643
[14] M.J. Martinez-Lope, J.A. Alonso, M.T. Casais, M.T. Fernandez-Diaz, “Preparation, Crystal and Magnetic Structure of the Double Perovskites Ba2CoBO6 (B = Mo, W),” Eur. J. Inorg. Chem., vol. 2002, no. 20, pp. 2463-2469, 2002.
[15] M. Musa Saad H.-E., M.A.K. Abdelhalim, A. El-Taher, “First-principles study of structural, electronic and magnetic properties of double perovskite oxides Ba2CoMO6 (M=Mo and W),” Mater. Sci. Semicond. Process., vol. 34, pp. 281-290, 2015. doi: 10.1016/j.mssp.2015.02.038
[16] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Aug-mented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001), ISBN 3-9501031-1-2.
[17] W. Khon, L. S. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev., vol. 140, pp. A1133-1138, 1965.
[18] J.P. Perdew, K. Burke, M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865-3868, 1996.
[19] F.D. Murnaghan, “The compressibility of media under extreme pressures,” Proc. Natl. Acad. Sci. USA, vol. 30, no. 9, pp. 244-247, 1944.
[20] C.E. Deluque Toro, A.S. Mosquera Polo, A.V. Gil Rebaza, D.A. Landínez Téllez, J. Roa-Rojas, “Ab Initio Study of the Electronic Structure, Elastic Properties, Magnetic Feature and Thermodynamic Properties of the Ba2NiMoO6 Material,” J. Low. Temp. Phys., vol. 192, no. 5-6, pp. 265-285, 2018. doi: 10.1007/s10909-018-1937-9
[21] M.W. Lufaso, P.M. Woodward, “Prediction of the crystal structures of perovskites using the software program SPuDS,” Acta Cryst. B, vol. 57, no. 6, pp. 725-738, 2001.
[22] W. Kraus, G. Nolze, POWDER CELL - a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns,” J. Appl. Crystallogr., vol. 29, no. 3, pp. 301-303, 1996.
[23] Q. Madueño, D.A. Landínez Téllez, J. Roa-Rojas, “Production and characterization of Ba2NdSbO6 complex perovskite as a substrate for YBa2Cu3O7- superconducting films,” Mod. Phys. Lett. B, vol. 20, no. 8, pp. 427-437, 2006.
[24] C.A. Triana, D.A. Landínez Téllez, J. Roa-Rojas, “General study on the crystal, electronic and band structures, the morphological characterization, and the magnetic properties of the Sr2DyRuO6 complex perovskite,” Mater. Character., vol. 99, pp. 128-141, 2015.
[25] R. Cardona, D.A. Landínez Téllez, J. Arbey Rodriguez M., F. Fajardo, J. Roa-Rojas, “Structural and magnetic properties of double-perovskite Ba2MnMoO6 by density functional theory,” J. Magnet. Magnet. Mater., vol. 320, no. 14, e85-e87, 2008.
[26] Y.M. Niquet, M. Fuchs, X. Gonze, “Exchange-correlation potentials in the adiabatic connection fluctuation-dissipation framework,” Phys. Rev. A, vol. 68, pp. 032507, 2003.
[27] D.D. Sarma, Sugata Ray, “Properties of a new magnetic material: Sr2FeMoO6,” Chem. Sci., vol. 113, no. 5-6, pp. 515-525, 2001.
[28] C.M. Bonilla, D.A. Landínez Téllez, J. Arbey Rodríguez, E. Vera López, J. Roa-Rojas, “Half-metallic behavior and electronic structure of Sr2CrMoO6 magnetic system,” Phys. B, vol. 398, no. 2, 208-211, 2007.
[29] C.E. Alarcón Suesca, C.E. Deluque Toro, A.V. Gil Rebaza, D.A. Landínez Téllez, J. Roa-Rojas, “Ab-initio studies of electronic, structural and thermophysical properties of the Sr2TiMoO6 double perovskite,” J. Alloys Compd., vol. 771, pp. 1080-1089, 2019. doi: 10.1016/j.jallcom.2018.08.314
[30] J. Kim, X. Chen, P-C. Shih, H. Yang, “Porous Perovskite-Type Lanthanum Cobaltite as Electrocatalysts toward Oxygen Evolution Reaction,” Sustainable Chem. Eng., vol. 5, no. 11, pp. 10910-10917, 2017.
[31] O. Sahnoun, H. Bouhani-Benziane, M. Sahnoun, M. Driz, C. Daul, Comput., “Ab initio study of structural, electronic and thermodynamic properties of tungstate double perovskites Ba2MWO6 (M= Mg, Ni, Zn),” Mater. Sci., vol. 77, pp. 316-321, 2013. doi: 10.1016/j.commatsci.2013.04.053
[32] A. Fossdal, M. Menon, I. Wærnhus, K. Wiik, M-A. Einarsrud, “Crystal structure and thermal expansion of La1-xSrxFeO3-δ materials,” J. Amer. Ceram. Soc., vol. 87, pp. 1952-1958, 2004.
[33] Y. Markandeya, Y.S. Reddy, S. Bale, C.V. Reddy, Y. Bhikshamaiah, “Characterization and thermal expansion of Sr2Fe𝑥Mo2−𝑥O6 double perovskites,” Bull. Mater. Sci., vol. 38, no. 6, pp., 1603-1608, 2015.
[34] S.A. Dar, V. Srivastava, U.K. Sakalle, V. Parey, “Electronic structure, magnetic, mechanical and thermo-physical behavior of double perovskite Ba2MgOsO6,” Europ. Phys. J. Plus, vol. 133, no. 64, 2018. doi: 10.1140/epjp/i2018-11889-y