Vol. 19 No. 4 (2020): Revista UIS Ingenierías
Articles

Analysis of the measurements of a device designed to register lightning currents in Barrancabermeja – Santander, using the lightning locations systems LINET and LMA in the 2018-2019 period

Edison Soto-Ríos
Universidad Industrial de Santander
Yenny Esmeralda Burbano-Burbano
Universidad Industrial de Santander
Wilfred Yesid García-Gómez
Universidad Industrial de Santander

Published 2020-09-05

Keywords

  • analysis,
  • comparison,
  • current,
  • equipment,
  • lightning,
  • measurement
  • ...More
    Less

How to Cite

Soto-Ríos, E., Burbano-Burbano, Y. E., & García-Gómez, W. Y. (2020). Analysis of the measurements of a device designed to register lightning currents in Barrancabermeja – Santander, using the lightning locations systems LINET and LMA in the 2018-2019 period. Revista UIS Ingenierías, 19(4), 199–212. https://doi.org/10.18273/revuin.v19n4-2020017

Abstract

This work presents the analysis of the most important acquired signals, during a period of four months, of a lightning current measurement equipment installed in Barrancabermeja - Colombia. Initially, the required instrumentation to acquire the current signals is shown and a total of 68 signals are obtained. In order to discard events that did not correspond to lightning, the measurements were compared with the strokes measured by the Colombian Network for Total Lightning Detection with LINET technology, and to establish whether those corresponded to direct impacts, were contrasted with the data provided by the DABEIBA-LMA (Lightning Mapping Array) network, located in the same city where the equipment is installed. Based on the above, it is possible to establish the events that correspond to external disturbances or to events produced by nearby strikes. In this article, according to the obtained results, it was found that the measurements due to lightning correspond to induced voltages caused by intra-cloud events.

Downloads

Download data is not yet available.

References

[1] H. Torres, “Normas técnicas sobre protección contra rayos y sus aplicaciones”, en El rayo: Mitos, leyendas, ciencia y tecnología, Colombia: Editorial Unibiblos, 2002, pp. 215-409.

[2] M. Paolone, F. Rachidi-Haeri, C. Nucci“IEEE Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines", en IEEE Std 1410-2004, Nueva York, pp.1-50, doi: 10.1109/IEEESTD.2004.94577

[3] “IEEE Guide for Improving the Lightning Performance of Transmission Lines", en IEEE Std 1243-1997, Nueva York, pp. 1-44.

[4] H. Torres-Sanchez, “Aplicación de la protección contra rayos a la falla de transformadores de distribución”, en Normas técnicas contra rayos y sus aplicaciones, Colombia: Editorial Unibiblos, 2002, pp. 143.

[5] H. Torres, E. Perez, C. Younes, D. Aranguren, J. Montaña, J. Herrera, "Contribution to Lightning Parameters Study Based on Some American Tropical Regions Observations", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8, no. 8, pp. 4086-4093, 2015, doi: 10.1109/JSTARS.2015.2428217

[6] M. Izadi, M. Z. A. Ab Kadir, V. Cooray, M. Hajikhani, “Estimation of Lightning Current and Return Stroke Velocity Profile Using Measured Electromagnetic Fields”, Electric Power Components and System, vol. 42, no. 2, pp. 103-111, 2014, doi: 10.1080/15325008.2013.853214

[7] F. Rachidi, J. L. Bermudez, M. Rubinstein, V. A. Rakov, “On the estimation of lightning peak currents from measured fields using lightning location system”, Journal of Electrostatics, vol.60, no. 2-4, pp. 121-129, 2004, doi: 10.1016/j.elstat.2004.01.010

[8] K. M. Eachron, “Lightning to the Empire State Building”, Journal of Franklin Inst, vol. 227, no. 2, pp. 140-217, 1939, doi: 10.1016/S0016-0032(39)90397-2

[9] K. Berger, R. B. Anderson, H. Kröninger, “Parameters of lightning flashes”, Electra, no. 41, pp. 23-37, 1975

[10] A. M. Hussein, W. Janischewskyj, J. S. Chang, V. Shostak, W. A. Chisholm, P. Dzurevych, Z. I Kawasaki, “Simultaneous measurement of lightning parameters for Strokes to the Toronto Canadian National Tower”, Journal of Geophysical Research, vol. 100, no. D5, pp. 8856-8861, 1995, doi: 10.1029/95JD00543

[11] M. Manhardt, F. Heidler, K. Stimper, "The electric field of negative upward lightning strikes at the Peissenberg tower, Germany", en 2012 International Conference on Lightning Protection (ICLP), Vienna, 2012, pp. 1-9, doi: 10.1109/ICLP.2012.6344205

[12] S. Visacro, A. Soares Jr., M. A. O. Schroeder, L. C. L. Cherchiglia, V. J. Sousa, “Statistical analysis of lightning current parameters: Measurements at Morro do Cachimbo station”, J. Geophys. Res., vol. 109, no. D1, 2004, doi:10.1029/2003JD003662

[13] S. Visacro, C. Mesquita, A. De Conti, F. H. Silveira, “Updated statistics of lightning currents measured at Morro do Cachimbo Station”, Atmos. Res., vol. 117, pp. 55-63, 2012, doi:10.1016/j.atmosres.2011.07.010

[14] M. Guimarães, P. Ramos, R. Sobreiro, S. Visacro, "Lightning Measurements at Morro do Cachimbo Station: new results," en 2014 International Conference on Lightning Protection (ICLP), Shanghai, 2014, pp. 1695-1700, doi: 10.1109/ICLP.2014.6973401

[15] H. Torres-Sanchez, “Transformador de distribución nuevo diseño para zona tropical”, programa de investigación, Universidad Nacional de Colombia, 2012, [En línea]. Disponible en http://www.ing.una.py/pdf/trafo-zona-tropicalparaguay.pdf

[16] R. I. Albrecht, S. J. Goodman, D. E. Buechler, R. J. Blakeslee, H. J. Christian, “Where are the lightning hotspots on Earth?“, Bulletin of the American Meteorological Society, vol. 97, no. 11, 2051–2068, 2016. doi: 10.1175/BAMS-D-14-00193.1

[17] A. M. Caballero, O. M. Moncada, “Selección de equipos para conformar un dispositivo de medición de corriente de rayos en una estructura elevada en el departamento de Santander”, trabajo de grado, Universidad Industrial de Santander, 2018.

[18] D. Y. Calderon, F. Y. Cely Quesada, “Artists, Construcción de un dispositivo para la medición de corrientes de rayo”, trabajo de grado, Universidad Industrial de Santander, 2018.

[19] Keraunos SAS. Red Colombiana de detección de rayos – LINET. 2015.

[20] P. M. Arias, “Qué rayos sabemos sobre innovación tecnológica”, Innovación y desarrollo tecnológico en la Ingeniería, vol. 34, no. 3, pp.87, 2019.

[21] W. Rison, R. J. Thomas, P. R. Krehbiel, T. Hamlin, J. Harlin, “GPS‐based three‐dimensional lightning mapping system: Initial observations in central New Mexico”, Geophysical Research Letters, vol. 26, no. 23, pp. 3573-3576, 1999, doi: 10.1029/1999GL010856

[22] P. R. Krehbiel, R. J. Thomas, W. Rison, T. Hamlin, J. Harlin, y M. Davis, “GPS‐based mapping system reveals lightning inside storms”, Eos, Transactions American Geophysical Union, vol. 81, no. 3, pp. 21-25, 2000, doi: 10.1029/00EO00014

[23] R. J. Thomas, P. R. Krehbiel, W. Rison, S. J. Hunyady, W. Winn, T. Hamlin, J. Harlin, “Accuracy of the lightning mapping array”, Journal of Geophysical Research: Atmospheres, vol. 109, no. D14, 2004, doi: 10.1029/2004JD004549

[24] S. A. Weiss, W. D. Rust, D. R. MacGorman, E. C. Bruning, P. R. Krehbiel, “Evolving complex electrical structures of the STEPS 25 June 2000 multicell storm”, Monthly Weather Review, vol. 136, no. 2, pp. 741-756, 2008, doi: 10.1175/2007MWR2023.1

[25] D. MacGorman, M. I. Biggerstaff, S. Waugh, J. T. Pilkey, M. A. Uman, D. M. Jordan, D. Betten, “Coordinated LMA, balloon-borne electric field, and polarimetric radar observations of a triggered lightning flash at Camp Blanding”, en XV International Conference on Atmospheric Electricity, Norman, Okla, 2014, pp. 15-20.

[26] V. Mazur, “Physical processes during development of lightning flashes”, Comptes Rendus Physique, vol. 3, no. 10, pp. 1393-1409, 2002, doi: 10.1016/S1631-0705(02)01412-3

[27] S. Visacro, “A representative curve for lightning current waveshape of first negative stroke”, Advancing earth and space science, vol. 31, pp. 3, 2004, doi: 10.1029/2004GL019642