Vol. 21 Núm. 1 (2022): Revista UIS Ingenierías
Artículos

Análisis computacional de la nucleación homogénea y crecimiento de gotas aplicado a separadores de gas natural

Natalia Prieto-Jiménez
Universidad Industrial de Santander
José Fuentes
Centro de Desarrollo Tecnológico-CDT del Gas
Germán González-Silva
Universidad Industrial de Santander

Publicado 2021-11-23

Palabras clave

  • Nucleación,
  • Crecimiento de gota,
  • Simulación molecular,
  • muestreo sombrilla

Cómo citar

Prieto-Jiménez , N., Fuentes , J. ., & González-Silva, G. (2021). Análisis computacional de la nucleación homogénea y crecimiento de gotas aplicado a separadores de gas natural. Revista UIS Ingenierías, 21(1), 83–94. https://doi.org/10.18273/revuin.v21n1-2022007

Resumen

Una gota de condensado de gas natural se genera a ciertas condiciones termodinámicas a través de tres etapas: sobresaturación, donde el gas tiene más moléculas de las que debería tener en equilibrio, formando “embriones” de fase líquida; nucleación, donde los embriones forman grupos de diferentes formas y tamaños de orden de nanómetros; y el crecimiento de gota, donde el número de moléculas aumenta hasta alcanzar el equilibrio. En este artículo, se analizan la nucleación homogénea y el crecimiento de una gota de gas natural aplicado a separadores gravitacionales operando a condiciones de alta presión (7 MPa). Los resultados mostraron que, a alta presión, el tamaño de gota inicial alcanzado fue de 8,024 nanómetros y el diámetro final de la gota fue de 4,18 micrómetros.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. British Petroleum, “BP Statistical Review of World Energy 2017,” Br. Pet., vol. 66, pp. 1-52, 2017 [Online]. Available: https://www.connaissancedesenergies.org/sites/default/files/pdf-actualites/bp-statistical-review-of-world-energy-2017-full-report.pdf.
  2. A. Bahadori, Natural gas processing: technology and engineering design. Waltham, MA, USA: Gulf Professional Publishing, 2014.
  3. M. Stewart, K. Arnold, “Two-Phase Gas–Liquid Separators,” in Gas-Liquid And Liquid-Liquid Separators, New Jersey, NJ, USA: Gulf Professional Publishing, 2008, pp. 65-130.
  4. G. Gonzalez-Silva, J. Botett-Cervantes, and N. Prieto-Jiménez, “Predicción del equilibrio vapor-líquido de la mezcla acetato de etilo-etanol usando la ecuación de estado de Peng Robinson,” Rev. UIS Ing., vol. 20, no. 1, pp. 135-142, 2020, doi: https://doi.org/10.18273/revuin.v20n1-2021012.
  5. D. Moreno-Díaz, N. Prieto-Jiménez, G. González-Silva, “Modelación del equilibrio líquido-vapor del sistema cloroformo-metano usando Van Laar y Peng Robinson,” Inf. Técnico, vol. 83, no. 2, pp. 112-120, 2019, doi: https://doi.org/10.23850/22565035.2042.
  6. J. S. Cornejo Caceres, N. Prieto, G. Gonzalez, and A. Chaves-Guerrero, “Numerical Simulation of a Natural Gas Cylindrical Cyclone Separator Using Computational Fluid Dynamics,” Ind. Eng. Chem. Res., vol. 58, no. 31, pp. 14323-14332, 2019, doi: https://doi.org/10.1021/acs.iecr.9b01217.
  7. N. Prieto Jiménez, “Simulação da combustão de coque em regeneradores FCC usando fluidodinâmica computacional,” 2011, pp. 96 [Online]. Available: http://repositorio.unicamp.br/jspui/handle/REPOSIP/266866.
  8. G. González, N. Prieto, I. Mercado, “Large Eddy Simulation (LES) Aplicado a un lecho fluidizado gas–sólido. Parte I: Reactor a escala de laboratorio,” Rev. UIS Ing., vol. 17, no. 1, pp. 93-104, 2018, doi: http://doi.org/10.18273/revuin.v17n1-2018009.
  9. A. Ghaffarkhah, M. Ameri Shahrabi, M. Keshavarz Moraveji, H. Eslami, “Application of CFD for designing conventional three phase oilfield separator,” Egypt. J. Pet., vol. 26, no. 2, pp. 413-420, 2017, doi: https://doi.org/10.1016/j.ejpe.2016.06.003.
  10. N. Kharoua, L. Khezzar, H. Saadawi, “CFD Modelling of a Horizontal Three-Phase Separator: A Population Balance Approach,” Am. J. Fluid Dyn., vol. 3, no. 4, pp. 101-118, 2013, doi: https://doi.org/10.5923/j.ajfd.20130304.03.
  11. G. G. Silva, N. P. Jiménez, O. F. Salazar, “Fluid Dynamics of Gas-Solid Fluidized Beds,” in Advanced Fluid Dynamics, Rijeka, Croatia, InTech, 2012, pp. 39.
  12. N. P. Jiménez, M. J. Hodapp, M. G. E. Silva, M. Mori, “Simulation of the coke combustion in a FCC regenerator using Computational Fluid Dynamics,” in 4to Taller Latinoamericano de CFD Aplicado a la Industria del Petróleo y Gas, Rio de Janeiro, Brasil, 2010.
  13. ExxonMobil, “Chapter 5. Drums: Vapor-Liquid Separators.,” in ExxonMobil Design Practices: ExxonMobil Research and Engineering Company, 1999.
  14. V. Kalikmanov, M. Betting, J. Bruining, D. M. Smeulders, “New developments in nucleation theory and their impact on natural gas separation,” in Conferencia y Exposición Técnica Anual de la SPE, Anaheim, California, EE. UU, 2007, doi: https://doi.org/10.2118/110736-MS.
  15. V. I. Kalikmanov, “Classical nucleation theory,” in Nucleation theory, Dordrecht: Springer, 2013, pp. 17–41, doi: https://doi.org/10.1007/978-90-481-3643-8_3.
  16. H. N. Pathak, “Nucleation and Droplet Growth During Co-condensation of Nonane and D 2 O in a Supersonic Nozzle,” Ph.D. dissertation, The Ohio State University, 2013.
  17. G. Lebon, D. Jou, J. Casas-Vázquez, Understanding non-equilibrium thermodynamics, vol. 295. Heidelberg, Germany: Springer, 2008.
  18. J. Merikanto et al., “Monte Carlo simulations of molecular clusters in nucleation,” dissertation, University of Helsinki, 2007.
  19. J. L. Katz, H. Wiedersich, “Nucleation theory without Maxwell demons,” J. Colloid Interface Sci., vol. 61, no. 2, pp. 351-355, 1977, doi: https://doi.org/10.1016/0021-9797(77)90397-6.
  20. S. L. Girshick, C. Chiu, “Kinetic nucleation theory: A new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor,” J. Chem. Phys., vol. 93, no. 2, pp. 1273-1277, 1990, doi: https://doi.org/10.1063/1.459191.
  21. G. Wilemski, “The Kelvin equation and self‐consistent nucleation theory,” J. Chem. Phys., vol. 103, no. 3, pp. 1119-1126, 1995, doi: https://doi.org/10.1063/1.469822.
  22. V. I. Kalikmanov, J. Wölk, T. Kraska, “Argon nucleation: Bringing together theory, simulations, and experiment,” J. Chem. Phys., vol. 128, no. 12, pp. 124506, 2008, doi: https://doi.org/10.1063/1.2888995.
  23. I. Napari, “Density functional theory of nucleation and phase behavior in binary fluid systems,” in Finnish Association for Aerosol Research, Helsinki, no. 49, 2000, pp. 1-27.
  24. B. Chen, J. I. Siepmann, K. J. Oh, M. L. Klein, “Simulating vapor–liquid nucleation of n-alkanes,” J. Chem. Phys., vol. 116, no. 10, pp. 4317-4329, 2002, doi: https://doi.org/10.1063/1.1445751.
  25. M. Santra, S. Chakrabarty, B. Bagchi, “Gas-liquid nucleation in a two dimensional system,” J. Chem. Phys., vol. 129, no. 23, pp. 234704, 2008, doi: https://doi.org/10.1063/1.3037241.
  26. R. Becker and W. Döring, “The kinetic treatment of nuclear formation in supersaturated vapors,” Ann. Phys. (N. Y)., vol. 24, pp. 719, 1935.
  27. A. Z. Panagiotopoulos, “Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble,” Mol. Phys., vol. 61, no. 4, pp. 813-826, 1987, doi: https://doi.org/10.1080/00268978700101491.
  28. R. W. Hakala, “A new derivation of the Boltzmann distribution law,” J. Chem. Educ., vol. 38, no. 1, pp. 33, 1961.
  29. B. Chen and J. I. Siepmann, “Improving the Efficiency of the Aggregation− Volume− Bias Monte Carlo Algorithm,” J. Phys. Chem. B, vol. 105, no. 45, pp. 11275-11282, 2001, doi: https://doi.org/10.1021/jp012209k.
  30. K. Johannes, “Umbrella sampling,” Wiley Interdiscip. Rev. Comput. Mol. Sci., vol. 1, no. 6, pp. 932-942, Apr. 2011, doi: https://doi.org/10.1002/wcms.66.
  31. J. B. Young, “The condensation and evaporation of liquid droplets in a pure vapour at arbitrary Knudsen number,” Int. J. Heat Mass Transf., vol. 34, no. 7, pp. 1649-1661, 1991, doi: https://doi.org/10.1016/0017-9310(91)90143-3.
  32. G. Gyarmathy, “The spherical droplet in gaseous carrier streams: review and synthesis,” Multiph. Sci. Technol., vol. 1, no. 1-4, 1982, doi: https://doi.org/10.1615/MultScienTechn.v1.i1-4.20.
  33. Ø. Patursson et al., “Development of a porous media model with application to flow through and around a net panel,” Ocean Eng., vol. 37, no. 2-3, pp. 314-324, 2010, doi: https://doi.org/10.1016/j.oceaneng.2009.10.001.
  34. T. Helsør and H. F. Svendsen, “Experimental characterization of pressure drop in dry demisters at low and elevated pressures,” Chem. Eng. Res. Des., vol. 85, no. 3, pp. 377-385, 2007, doi: https://doi.org/10.1205/cherd06048.
  35. M. Souders and G. G. Brown, “Design of fractionating columns I. Entrainment and capacity,” Ind. Eng. Chem., vol. 26, no. 1, pp. 98-103, 1934.