Oscilaciones en modelos SIR estacionales con tratamiento saturado

  • L. Rocío González-Ramírez Universidad Michoacana de San Nicolás de Hidalgo. Conacyt.
  • Osvaldo Osuna Universidad Michoacana de San Nicolás de Hidalgo.
  • Geiser Villavicencio-Pulido Universidad Autónoma Metropolitana Unidad Lerma

Resumen

En este trabajo presentamos condiciones suficientes para la existencia de soluciones periódicas en modelos epidemiológicos estacionales de tipo SIR con funciones de incidencia y de tratamiento saturados. Utilizamos la teoría de grado de Leray-Schauder para establecer la existencia de órbitas periódicas en tales modelos.


Para citar este artículo: L.R. González-Ramírez, O. Osuna, G. Villavicencio-Pulido, Oscillations in seasonal SIR models with saturated treatment, Rev. Integr. Temas Mat. 34 (2016), No. 2, 125131.

Palabras clave: Grado de Leray-Schauder, modelo SIR, órbitas periódicas, número reproductivo básico

Descargas

Descargar los datos que aún no están disponibles

Citas

[1] Brown R.F., A topological introduction to nonlinear analysis, Second ed., Birkhäuser Boston, Inc., Boston, MA, 2004.

[2] Capasso V. and Serio G., "A generalization of the Kermack-McKendrick deterministic epidemic model", Math. Biosci. 42 (1978), No. 1-2, 43-61.

[3] Gaines R.E. and Mawhin J.L., Coincidence degree and nonlinear differential equations, Springer-Verlag, Berlin-New York, 1977.

[4] González-Ramírez L.R., Osuna O. and Santaella-Forero R., "Periodic orbits for seasonal SIRS models with non-linear incidence rates", Electron. J. Differential Equations 2015 (2015), No. 300, 1-10.

[5] Katriel G., "Existence of periodic solutions for periodically forced SIR model", J. Math. Sci. (N.Y) 201 (2014), No. 3, 335-342.

[6] Li L., Bai Y. and Jin Z., "Periodic solutions of an epidemic model with saturated treatment", Nonlinear Dynam. 76 (2014), No. 2, 1099-1108.

[7] Liu W.M., Levin S.A. and Iwasa Y., "Influence of nonlinear incidence rates upon the behaviour of SIRS epidemiological models", J. Math. Biol. 23 (1986), No. 2, 187-204.

[8] Song B., Du W. and Lou J., "Different types of backward bifurcations due to density-dependent treatments", Math. Biosci. Eng. 10 (2013), No. 5-6, 1651-1668.

[9] van den Driessche P. and Watmough J., "Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission", Math. Biosci. 180 (2002), 29-48.

[10] Weber A., Weber M. and Milligan P., "Modeling epidemics caused by respiratory synctial virus (RSV)", Math. Biosci. 172 (2001), No. 2, 95-113.

[11] Xiao D. and Ruan S., "Global analysis of an epidemic model with non monotone incidence rate", Math. Biosci. 208 (2007), No. 2, 419-429.

[12] Zhang X. and Liu X., "Backward bifurcation of an epidemic model with saturated treatment function", J. Math. Anal. Appl. 348 (2008), No. 1, 433-443.
Publicado
2016-12-09
Cómo citar
GONZÁLEZ-RAMÍREZ, L. Rocío; OSUNA, Osvaldo; VILLAVICENCIO-PULIDO, Geiser. Oscilaciones en modelos SIR estacionales con tratamiento saturado. REVISTA INTEGRACIÓN, [S.l.], v. 34, n. 2, p. 125-131, dic. 2016. ISSN 2145-8472. Disponible en: <http://revistas.uis.edu.co/index.php/revistaintegracion/article/view/5963>. Fecha de acceso: 22 nov. 2017 doi: https://doi.org/10.18273/revint.v34n2-2016001.
Sección
Artículo Original