Vol. 41 Núm. 3 (2019): Boletín de Geología
Artículos

Evaluación de la amenaza por movimientos en masa detonados por lluvias para una región de los Andes colombianos estimando la probabilidad espacial, temporal, y magnitud

Edier Aristizábal
Universidad Nacional de Colombia
Biografía
Sandra López
Universidad Nacional de Colombia
Biografía
Oscar Sánchez
Universidad Nacional de Colombia
Biografía
Mariana Vásquez
Universidad Nacional de Colombia
Biografía
Felipe Rincón
Universidad Nacional de Colombia
Biografía
Diana Ruiz-Vásquez
Universidad Nacional de Colombia
Biografía
Sebastián Restrepo
Universidad Nacional de Colombia
Biografía
Johan Sebastián Valencia
Universidad Nacional de Colombia
Biografía

Publicado 2019-09-30

Palabras clave

  • amenaza,
  • movimientos en masa inducidos por lluvia,
  • Peso de la Evidencia

Cómo citar

Aristizábal, E., López, S., Sánchez, O., Vásquez, M., Rincón, F., Ruiz-Vásquez, D., Restrepo, S., & Valencia, J. S. (2019). Evaluación de la amenaza por movimientos en masa detonados por lluvias para una región de los Andes colombianos estimando la probabilidad espacial, temporal, y magnitud. Boletín De Geología, 41(3), 85–105. https://doi.org/10.18273/revbol.v41n3-2019004

Altmetrics

Resumen

Los movimientos en masa detonados por lluvia son una de las amenazas que cobra el mayor número de víctimas anuales en terrenos montañosos y ambientes tropicales, como los Andes colombianos. En el presente estudio, se evaluó la amenaza por movimientos en masa detonados por lluvias en el Valle de Aburrá, localizado en el norte de los Andes colombianos, donde se asienta un número importante de viviendas y familias en áreas altamente susceptibles. Por esta razón, se presenta un método cuantitativo que permite evaluar de forma holística la amenaza combinando la probabilidad espacial, temporal y magnitud. Para la probabilidad espacial de ocurrencia, se utiliza el método estadístico bivariado denominado Peso de la Evidencia. Para la probabilidad temporal, se identificaron los umbrales de lluvia detonante y lluvia antecedente requerida para detonar un movimiento en masa y su probabilidad temporal diaria, y finalmente, para la probabilidad de magnitud, se utilizó la curva magnitud-frecuencia de acuerdo con el inventario multitemporal de movimientos en masa elaborado. Los resultados obtenidos señalan que la categoría de amenaza alta representa el 75% de los movimientos en masa del inventario elaborado y abarca el 37% del área de estudio, la categoría media representa 28% de los movimientos en masa del inventario y el 56% del área de estudio, y finalmente la categoría de amenaza baja representa tan solo el 25% de los movimientos en masa del inventario y el 7% del área de estudio.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

Aleotti, P. (2004). A warning system for rainfall-induced shallow failures. Engineering Geology, 73(3-4), 247-265. doi: 10.1016/j.enggeo.2004.01.007.

AMVA. (2007). Microzonificación sísmica detallada de los municipios de Barbosa, Girardota, Copacabana, Sabaneta, La Estrella, Caldas y Envigado. 745 p. Área Metropolitana del Valle de Aburrá.

AMVA-UNAL. (2009). Amenaza, vulnerabilidad y riesgo por movimientos en masa, avenidas torrenciales e inundaciones en el Valle de Aburrá - Libro I. 124 p. Área Metropolitana del Valle de Aburrá – Universidad Nacional de Colombia.

AMVA-UNAL. (2018). Estudios básicos de amenaza por movimientos en masa, inundaciones y avenidas torrenciales en los municipios de Caldas, La Estrella, Envigado, Itagüí, Bello, Copacabana y Barbosa, para la incorporación de la gestión del riesgo en la planificación territorial. Informe técnico. Área Metropolitana del Valle de Aburrá – Universidad Nacional de Colombia.

Aristizábal, E., y Gómez, J. (2007). Inventario de emergencias y desastres en el Valle de Aburrá. Originados por fenómenos naturales y antrópicos en el periodo 1880-2007. Gestión y Ambiente, 10(2), 17-30.

Aristizábal, E., González, T., Montoya, J., Vélez, J., Martínez, H., and Guerra, A. (2011). Análisis de umbrales empíricos de lluvia para el pronóstico de movimientos en masa en el Valle de Aburrá, Colombia. Revista EIA, 8(15), 95-111.

Bai, S., Wang, J., Thiebes, B., Cheng, C., and Yang, Y. (2014). Analysis of the relationship of landslide occurrence with rainfall: a case study of Wudu County, China. Arabian Journal of Geosciences, 7(4), 1277-1285. doi: 10.1007/s12517-013-0939-9.

Banco Mundial y GFDRR. (2012). Análisis de la gestión del riesgo de desastres en Colombia: un aporte para la construcción de políticas públicas. Global Facility for Disaster Reduction and Recovery - Sistema Nacional de Información Para La Gestión Del Riesgo de Desastres. 436 p. Bogotá, Colombia: Banco Mundial.

Cantarino, I., Carrion, M.A., Goerlich, F., and Martínez, V. (2019). A ROC analysis-based classification method for landslide susceptibility maps. Landslides, 16(2), 265-282. doi: 10.1007/s10346-018-1063-4.

Corominas, J. (2000). Landslides and climate. In: Bromhead EN (ed) VIII International Symposium on Landslides Cardiff UK, keynote lectures CDROM 200.

Cruden, D.M., and Varnes, D.J. (1996). Landslide types and processes. In: A.K. Tuner, R.L. Schuster (eds.). Landslides: investigation and mitigation (pp. 36-75). Chapter 3. Transportation research board special report. Vol. 247.

Changnon, S., Pielke, R.Jr., Changnon, D., Sylves, R., and Pulwarty, R. (2000). Human factors explain the increased losses from weather and climate extreme. Bulletin of the American Meteorological Society, 81(3), 437-442.

Chica, A. (1989). Apuntes de geotecnia: cursos de geotecnia y prácticas geotécnicas, Facultad de Minas, Ed. Medellín, Colombia: Universidad Nacional de Colombia.

Chung, C.F., and Fabbri, A.G. (1999). Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering & Remote Sensing, 65(12), 1389-1399.

Chung, C.F., and Fabbri, A.G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30(3), 451-472. doi: 10.1023/B:NHAZ.0000007172.62651.2b.

DANE. (2005). Censo 2005. Consultado el 15 de febrero de 2018. www.dane.gov.co/censo/.

Dilley, M., Chen, R., Deichmann, U., Lerner-Lam, A., and Arnold, M. (2005). Natural disaster hotspots. A global risk analysis. Washington: World Bank.

Davis, P.A., and Goodrich, M.T. (1990). A proposed strategy for the validation of ground-water flow and solute transport models. Technical Report, Sandia National Labs. Albuquerque, NM (USA).

Düzgün, H.S.B. and Grimstad, S. (2007). Reliability-based stability analysis and risk assessment for rock slides in Ramnefjell. Proceedings of Applications and Statistics and Probability in Civil Engineering ICASP10, Tokyo, Japan.

Eeckhaut, M., and Hervás, J. (2012). Landslide inventories in Europe and policy recommendations for their interoperability and harmonisation. JRC Scientific and Policy Reports, Report EUR 25666.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognation Letters, 27(8), 861-874. doi: 10.1016/j.patrec.2005.10.010.

Flórez, M., Molina, M., y Ramírez, I. (1996). Método cualitativo para la determinación de los niveles de amenaza por movimientos en masa de la ciudad de Medellín, ladera occidental. Alcaldía de Medellín, 90 p.

Glade, T., Crozier, M., and Smith, P. (2000). Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “Antecedent Daily Rainfall Model”. Pure and Applied Geophysics, 157(6-8), 1059-1079. doi: 10.1007/s000240050017.

Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1-4), 181-216. doi: 10.1016/S0169-555X(99)00078-1.

Guzzetti, F., and Tonelli, G. (2004). Information system on hydrological and geomorphological catastrophes in Italy (SICI): a tool for managing landslide and flood hazards. Natural Hazards and Earth System Science, 4(2), 213-232. doi: 10.5194/nhess-4-213-2004.

Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C.P. (2007). Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and Atmospheric Physics, 98(3-4), 239-267. doi: 10.1007/s00703-007-0262-7

Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C.P. (2008). The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides, 5(1), 3-17. doi: 10.1007/s10346-007-0112-1.

Hermelin, M. (1984). Riesgo geológico en el Valle de Aburrá. Conferencia sobre Riesgos Geológicos en el Valle de Aburrá, Medellín, Colombia.

Ho, J.Y., and Lee, K.T. (2017). Performance evaluation of a physically based model for shallow landslide prediction. Landslides, 14(3), 961-980. doi: 10.1007/s10346-016-0762-y.

Hoppe, P., and Pielke, R.A.Jr. (2006). Climate Change and Disaster Losses Workshop: Understanding and Attributing Trends and Projections. Hohenkammer, Germany, 234 p.

INGEOMINAS. (1990). Zonificación de aptitud del suelo para el uso urbano costado occidental de Medellín. Reporte interno, 91 pp.

Jaiswal, P., van Westen, C., and Jetten, V. (2010). Quantitative landslide hazard assessment along a transportation corridor in southern India. Engineering Geology, 116(3-4), 236-250. doi: 10.1016/j.enggeo.2010.09.005.

LA RED y OSSO. (2017). DesInventar. Consultado el 25 de septiembre de 2017. http://www.desinventar.org/es/

Liu, C., Frazier, P., and Kumar, L. (2007). Comparative assessment of the measures of thematic classification accuracy. Remote Sensing of Environment, 107(4), 606-616. doi: 10.1016/j.rse.2006.10.010.

Malamud, B.D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P. (2004). Landslide inventories and their statistical properties. Earth Surface Processes and Landforms, 29(6), 687-711. doi: 10.1002/esp.1064.

Morss, R.E., Wilhelmi, O.V., Meehl, G.A., and Dilling, L. (2011). Improving societal outcomes of extreme weather in a changing climate: An integrated perspective. Annual Review of Environment Resources, 36, 1-25. doi: 10.1146/annurev-environ-060809-100145.

Oh, H.J., and Lee, S. (2011). Landslide susceptibility mapping on Panaon Island, Philippines using a geographic information system. Environmental Earth Science, 62(5), 935-951. doi: 10.1007/s12665-010-0579-2.

OSSO y LA RED. (2009). DesInventar. Sistema de inventario de desastres. Guía Metodológica.

Ozdemir, A., and Altural, T. (2013). A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180-197. doi: 10.1016/j.jseaes.2012.12.014.

Petley, D. (2012). Global patterns of loss of life from landslides. Geology, 40(10), 927-930. doi: 10.1130/G33217.1 .

Regmi, N.G., Giardino, J.R., and Vitek, J.D. (2010). Modeling susceptibility to landslide using the weight of evidence approach: Western Colorado, USA. Geomorphology, 115(1-2), 172-187. doi: 10.1016/j.geomorph.2009.10.002.

Rodríguez, E.A., Sandoval, J.H., Chaparro, J.L., Medina, E., Ramírez, K.C., Castro, E., Castro, J.A., y Ruiz, G.L. (2017). Guía metodológica para zonificación de amenaza por movimientos en masa a escala 1:25.000. Servicio Geológico Colombiano, Bogotá, Colombia.

Sánchez, O., y Aristizábal, E. (2017). Análisis de los impactos por movimientos en masa en Colombia. XVI Congreso Colombiano de Geología, Santa Marta, Colombia.

Sepúlveda, S.A., and Petley, D.N. (2015). Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean. Natural Hazards and Earth System Sciences, 15(8), 1821-1833. doi: 10.5194/nhess-15-1821-2015.

SGC. (2015). Guía Metodológica para estudios de Amenaza, Vulnerabilidad y Riesgo por movimientos en masa. Servicio Geológico Colombiano, Bogotá, Colombia.

SGC. (2017). SIMMA. Servicio Geológico Colombiano. Retrieved from http://simma.sgc.gov.co/#/

Shelmon, R. (1979). Zonas de deslizamientos en los alrededores de Medellín, Antioquia (Colombia). Publicaciones Geológicas Especiales del INGEOMINAS. 45 pp.

Sujatha, E.R., Kumaravel, P., and Rajamanickam, G.V. (2014). Assessing landslide susceptibility using Bayesian probability-based weight of evidence model. Bulletin of Engineering Geology and the Environment, 73(1), 147-161. doi: 10.1007/s10064-013-0537-9.

Tokuhiro, H. (1999). Landslide in Villa Tina, Medellin City, Colombia. In: K. Sassa (ed.). Landslides of the World (pp. 198-201). Japan Landslide Society, Kyoto University Press.

Varnes, D.J. (1984). Landslide hazard zonation: A review of principles and practice. Natural Hazards. Paris: UNESCO.

Van Westen, C.J., Rengers, N., and Soeters, R. (2003). Use of geomorphological information in indirect landslide susceptibility assessment. Natural Hazards, 30(3), 399-419. doi: 10.1023/B:NHAZ.0000007097.42735.9e.

Vega, J.A., and Hidalgo, C.A. (2016). Quantitative risk assessment of landslides triggered by earthquakes and rainfall based on direct costs of urban buildings. Geomorphology, 273, 217-235. doi: 10.1016/j.geomorph.2016.07.032.

Wieczorek, G.F., and Glade, T. (2005). Climatic factors influencing occurrence of debris flws. In: M. Jackob, O. Hungr (eds.). Debris-flow hazards and related phenomena (pp. 325-362). Heidelberg: Springer.

Wu, C.Y., and Chen, S.C. (2013). Integrating spatial, temporal, and size probabilities for the annual landslide hazard maps in the Shihmen watershed, Taiwan. Natural Hazards and Earth System Sciences, 13, 2353-2367. doi: 10.5194/nhess-13-2353-2013.

Zhang, J., van Westen, C., Tanyas, H., Mavrouli, O., Ge, Y., Bajrachary, S., Gurung, D.R., Dhital, M.R., and Khana, N.R. (2019). How size and trigger matter: analyzing rainfall- and earthquake-triggered landslide inventories and their causal relation in the Koshi River basin, Central Himalaya. Natural Hazards and Earth System Sciences, 19(8), 1789-1805. doi: 10.5194/nhess-19-1789-2019.