Vol. 44 Núm. 3 (2022): Boletín de Geología
Artículos científicos

Metodologías para la evaluación de la amenaza por movimientos en masa como parte de los estudios básico de amenaza: caso de estudio municipio de Andes, Antioquia, Colombia

Edier Aristizábal
Universidad Nacional de Colombia
Paula Morales-García
Universidad Nacional de Colombia
Mariana Vásquez-Guarín
Universidad Nacional de Colombia
Diana Ruíz-Vásquez
Universidad Nacional de Colombia
Johnnatan Palacio-Córdoba
Universidad Nacional de Colombia
Flor Patricia Ángel-Cárdenas
Universidad Nacional de Colombia
Humberto Caballero-Acosta
Universidad Nacional de Colombia
Oswaldo Ordóñez-Carmona
Universidad Nacional de Colombia

Publicado 2022-10-26

Palabras clave

  • Procesos de ladera,
  • Gestión del riesgo,
  • Planificación territorial,
  • Andes (Antioquia)

Cómo citar

Aristizábal, E., Morales-García, P., Vásquez-Guarín, M., Ruíz-Vásquez, D., Palacio-Córdoba, J., Ángel-Cárdenas, F. P., Caballero-Acosta, H., & Ordóñez-Carmona, O. (2022). Metodologías para la evaluación de la amenaza por movimientos en masa como parte de los estudios básico de amenaza: caso de estudio municipio de Andes, Antioquia, Colombia. Boletín De Geología, 44(3), 199–217. https://doi.org/10.18273/revbol.v44n3-2022009

Altmetrics

Resumen

Los estudios básicos de susceptibilidad y amenaza por la ocurrencia de movimientos en masa son un elemento fundamental para la actualización de los planes de ordenamiento de los municipios del territorio colombiano. Dado lo anterior, la Ley 1523 de 2012 establece la política marco, y el Decreto 1807 de 2014, compilado en el 1077 de 2015, establece los lineamientos técnicos que tales estudios deben seguir y las condiciones mínimas que se deben cumplir. Por este motivo, se realizó una selección de algunas metodologías reconocidas en la literatura, que, al ser adecuadas y validadas según las condiciones propias de cada municipalidad, pueden ser utilizadas para la realización de tales estudios, sean tanto para el área rural y para suelo urbano y de expansión, como para cada uno de los factores que pueden detonar estos eventos.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Aleotti, P.; Chowdhury, R. (1999). Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and the Environment, 58(1), 21-44. https://doi.org/10.1007/s100640050066
  2. Aristizábal, E.; González, T.; Montoya, J.D.; Vélez, J.I.; Martínez, H.; Guerra, A. (2011). Análisis de umbrales empíricos de lluvia para el pronóstico de movimientos en masa en el Valle de Aburrá, Colombia. Revista EIA, 15, 95-111.
  3. ASTM D2487-17. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, West Conshohocken, PA, 2017. https://doi.org/10.1520/D2487-17
  4. Atkinson, P.; Jiskoot, H.; Massari, R.; Murray, T. (1998). Generalized linear modelling in geomorphology. Earth Surface Processes and Landforms, 23(13), 1185-1195. https://doi.org/10.1002/(SICI)1096-9837(199812)23:13<1185::AID-ESP928>3.0.CO;2-W
  5. Ayalew, L.; Yamagishi, H.; Ugawa, N. (2004). Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides, 1(1), 73-81. https://doi.org/10.1007/s10346-003-0006-9
  6. Ayalew, L.; Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1-2), 15-31. https://doi.org/10.1016/j.geomorph.2004.06.010
  7. Barredo, J.; Benavides, A.; Hervás, J.; van Westen, C.J. (2000). Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. International Journal of Applied Earth Observation and Geoinformation, 2(1), 9-23. https://doi.org/10.1016/S0303-2434(00)85022-9
  8. Canli, E.; Mergili, M.; Thiebes, B.; Glade, T. (2018). Probabilistic landslide ensemble prediction systems: Lessons to be learned from hydrology. Natural Hazards and Earth System Sciences, 18(8), 2183-2202. https://doi.org/10.5194/nhess-18-2183-2018
  9. Carrara, A. (1983). Multivariate models for landslide hazard evaluation. Journal of the International Association for Mathematical Geology, 15(3), 403-426. https://doi.org/10.1007/BF01031290
  10. Carvalho, L.F.; Fernandes, G.; de Assis, M.V.O.; Rodrigues, J.J.P.C.; Lemes Proença, M. (2014). Digital signature of network segment for healthcare environments support. IRBM, 35(6), 299-309. https://doi.org/10.1016/j.irbm.2014.09.001
  11. Chacón, J.; Irigaray, C.; Fernández, T.; El Hamdouni, R. (2006). Engineering geology maps: landslides and geographical information systems. Bulletin of Engineering Geology and the Environment, 65(4), 341-411. https://doi.org/10.1007/s10064-006-0064-z
  12. Chevalier, G.G.; Medina, V.; Hürlimann, M.; Bateman, A. (2013). Debris-flow susceptibility analysis using fluvio-morphological parameters and data mining: Application to the Central-Eastern Pyrenees. Natural Hazards, 67(2), 213-238. https://doi.org/10.1007/s11069-013-0568-3
  13. Chowdhury, R.; Flentje, P.; Bhattacharya, G. (2009). Geotechnical slope analysis. CRC Press. https://doi.org/10.1201/9780203864203
  14. Chung, C.J.F.; Fabbri, A.G. (2003). Validation of Spatial Prediction Models for Landslide Hazard Mapping. Natural Hazards, 30(3), 451-472. https://doi.org/10.1023/B:NHAZ.0000007172.62651.2b
  15. Corominas, J.; Moya, J.; Ledesma, A.; Lloret, A.; Gili, J.A. (2005). Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides, 2(2), 83-96. https://doi.org/10.1007/s10346-005-0049-1
  16. Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; Pitilakis, K.; Winter, M.G.; Pastor, M.; Ferlisi, S.; Hervás, J.; Smith, J.T. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 73(2), 209-263. https://doi.org/10.1007/s10064-013-0538-8
  17. Dahal, R.K.; Hasegawa, S. (2008). Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology, 100(3-4), 429-443. https://doi.org/10.1016/j.geomorph.2008.01.014
  18. Dai, F.C.; Lee, C.F.; Li, J.; Xu, Z.W. (2001). Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental Geology, 40(3), 381-391. https://doi.org/10.1007/s002540000163
  19. Davis, P.A.; Price, L.L.; Wahi, K.K.; Goodrich, M.T.; Gallegos, D.P.; Bonano, E.J.; Guzowski, R.V. (1990). Components of an overall performance assessment methodology. Nuclear Regulatory Commission, Washington, DC (USA). Div. of High-Level Waste Management; Sandia National Labs., Albuquerque, NM (USA); GRAM, Inc., Albuquerque, NM (USA); Science Applications International Corp., Albuquerque, NM (USA). https://doi.org/10.2172/7262608
  20. Decreto 1807 de 2014. 19 de Septiembre de 2014. Por el cual se reglamenta el artículo 189 del Decreto-ley 019 de 2012 en lo relativo a la incorporación de la gestión del riesgo en los planes de ordenamiento territorial y se dictan otras disposiciones. Ministerio de Vivienda, Colombia.
  21. Erener, A.; Düzgün, H.B.S. (2013). A regional scale quantitative risk assessment for landslides: Case of Kumluca watershed in Bartin, Turkey. Landslides, 10(1), 55-73. https://doi.org/10.1007/s10346-012-0317-9
  22. Ermini, L.; Catani, F.; Casagli, N. (2005). Artificial neural networks applied to landslide susceptibility assessment. Geomorphology, 66(1-4), 327-343. https://doi.org/10.1016/j.geomorph.2004.09.025
  23. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874. https://doi.org/10.1016/j.patrec.2005.10.010
  24. Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. (2008). Guideline for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology, 102(3-4), 85-98. https://doi.org/10.1016/j.enggeo.2008.03.022
  25. Glade, T. (2000). Modelling landslide-triggering rainfalls in different regions of New Zealand-The Soil Water Status Model. Zeitschrift für Geomorphologie, 122, 63-84.
  26. Glade, T.; Crozier, M.; Smith, P. (2000). Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “Antecedent Daily Rainfall Model”. Pure and Applied Geophysics, 157(6-8), 1059-1079. https://doi.org/10.1007/s000240050017
  27. Godt, J.W.; Baum, R.L.; Savage, W.Z.; Salciarini, D.; Schulz, W.H.; Harp, E.L. (2008). Transient deterministic shallow landslide modeling: requirements for susceptibility and hazard assessments in a GIS framework. Engineering Geology, 102(3-4), 214-226. https://doi.org/10.1016/j.enggeo.2008.03.019
  28. Gorsevski, P.V.; Gessler, P.; Foltz, R.B. (2000). Spatial prediction of landslide hazard using discriminant analysis and GIS. GIS in the Rockies 2000 Conference and Workshop: applications for the 21st Century, Denver, Colorado.
  29. Gorsevski, P.V.; Gessler, P.E.; Foltz, R.B.; Elliot, W.J. (2006). Spatial prediction of landslide hazard using logistic regression and ROC analysis. Transactions in GIS, 10(3), 395-415. https://doi.org/10.1111/j.1467-9671.2006.01004.x
  30. GRASS Team. (2017). GRASS Development Team 2011. Geographic Resources Analysis Support System (GRASS) Software. Open Source Geospatial Foundation Project. https://grass.osgeo.org/
  31. Gruber, S.; Peckham, S. (2009). Land-surface parameters and objects in hydrology. Developments in Soil Science, 33, 171-194. https://doi.org/10.1016/S0166-2481(08)00007-X
  32. Guo, X.; Cui, P.; Li, Y. (2013). Debris flow warning threshold based on antecedent rainfall: a case study in Jiangjia Ravine, Yunnan, China. Journal of Mountain Science, 10(2), 305-314. https://doi.org/10.1007/s11629-013-2521-z
  33. Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. (1999). Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1-4), 181-216. https://doi.org/10.1016/S0169-555X(99)00078-1
  34. Hovland, H.J. (1977). Three-dimensional slope stability analysis method. Journal of Geotechnical and Geoenvironmental Engineering, 103, 693-395. https://doi.org/10.1061/AJGEB6.0000493
  35. Jibson, R.W.; Harp, E.L.; Michael, J.A. (2000). A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology, 58(3), 271-289. https://doi.org/10.1016/S0013-7952(00)00039-9
  36. Jibson, R.W. (2007). Regression models for estimating coseismic landslide displacement. Engineering Geology, 91(2-4), 209-218. https://doi.org/10.1016/j.enggeo.2007.01.013
  37. Jones, K.H. (1998). A comparison of algorithms used to compute hill slope as a property of the DEM. Computers & Geosciences, 24(4), 315-323. https://doi.org/10.1016/S0098-3004(98)00032-6
  38. King, G.J.W. (1989). Revision of effective-stress method of slices. Géotechnique, 39(3), 497-502. https://doi.org/10.1680/geot.1989.39.3.497
  39. Lee, S.; Ryu, J.H.; Won, J.S.; Park, H.J. (2004). Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Engineering Geology, 71(3-4), 289-302. https://doi.org/10.1016/S0013-7952(03)00142-X
  40. Lee, S. (2005). Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. International Journal of Remote Sensing, 26(7), 1477-1491. https://doi.org/10.1080/01431160412331331012
  41. Lee, S.; Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4(1), 33-41. https://doi.org/10.1007/s10346-006-0047-y
  42. Lee, C.T.; Huang, C.C.; Lee, J.F.; Pan, K.L.; Lin, M.L.; Dong, J.J. (2008). Statistical approach to storm event-induced landslides susceptibility. Natural Hazards and Earth System Sciences, 8(4), 941-960. https://doi.org/10.5194/nhess-8-941-2008
  43. Mergili, M.; Marchesini, I.; Rossi, M.; Guzzetti, F.; Fellin, W. (2014). Spatially distributed threedimensional slope stability modelling in a raster GIS. Geomorphology, 206, 178-195. https://doi.org/10.1016/j.geomorph.2013.10.008
  44. Newmark, N.M. (1965). Effects of Earthquakes on Dams and Embankments. Géotechnique, 15(2), 139-160. https://doi.org/10.1680/geot.1965.15.2.139
  45. Oh, H.J.; Lee, S. (2011). Landslide susceptibility mapping on Panaon Island, Philippines using a geographic information system. Environmental Earth Sciences, 62(5), 935-951. https://doi.org/10.1007/s12665-010-0579-2
  46. Olshausen; B.A. (2004). Bayesian probability theory. The Redwood Center for Theoretical Neuroscience, Helen Wills Neuroscience Institute at the University of California at Berkeley, Berkeley.
  47. Ozdemir, A.; Altural, T. (2013). A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180-197. https://doi.org/10.1016/j.jseaes.2012.12.014
  48. Pack, R.T.; Tarboton, D.G.; Goodwin, C.N. (1998). The SINMAP approach to terrain stability mapping. 8th Congress of the International Association of Engineering Geology, Vancouver, Canada.
  49. Regmi, N.R.; Giardino, J.R.; Vitek, J.D. (2010). Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology, 115(1-2), 172-187. https://doi.org/10.1016/j.geomorph.2009.10.002
  50. Saaty, T.L. (1980). The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill International Book Co.
  51. Saaty, T.L. (2001). The seven pillars of the analytic hierarchy process. In: M. Köksalan, S. Zionts (eds.). Multiple Criteria Decision Making in the New Millennium (pp. 15-37). Springer. https://doi.org/10.1007/978-3-642-56680-6_2
  52. SGC. (2017). Guía metodológica para la zonificación de amenaza por movimientos en masa Escala 1: 25 000. 1-160. https://doi.org/10.32685/9789585978225
  53. Soeters, R.; van Westen, C.J. (1996). Slope instability recognition, analysis and zonation. In: A.K. Turner, R.L. Schuster (eds.). Landslide: Investigations and Mitigation (Transportation Research Board, National Research Council) (pp. 129-177). Special Report, 247. National Academy Press.
  54. Sujatha, E.R.; Kumaravel, P.; Rajamanickam, G.V. (2014). Assessing landslide susceptibility using Bayesian probability-based weight of evidence model. Bulletin of Engineering Geology and the Environment, 73(1), 147-161. https://doi.org/10.1007/s10064-013-0537-9
  55. Süzen, M.L.; Doyuran, V. (2004). Data driven bivariate landslide susceptibility assessment using geographical information systems: A method and application to Asarsuyu catchment, Turkey. Engineering Geology, 71(3-4), 303-321. https://doi.org/10.1016/S0013-7952(03)00143-1
  56. UNAL. (2018). Estudio básico de susceptibilidad y amenaza por movimientos en masa, inundaciones y avenidas torrenciales en el municipio de Andes, como base para la incorporación de la gestión del riesgo en la planificación territorial. Medellín.
  57. van Westen, C.J. (1993). Application of geographic information systems to landslide hazard zonation. PhD Thesis, Delft University of Technology.
  58. van Westen, C.J.; Rengers, N.; Soeters, R. (2003). Use of geomorphological information in indirect landslide susceptibility assessment. Natural Hazards, 30(3), 399-419. https://doi.org/10.1023/B:NHAZ.0000007097.42735.9e
  59. van Westen, C.J.; Castellanos, E.; Kuriakose, S.L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102(3-4), 112-131. https://doi.org/10.1016/j.enggeo.2008.03.010
  60. Varnes, D.J. (1984). Landslide hazard zonation: a review of principles and practice. Unesco.