El deslizamiento gravitatorio de Guando (Tolima, Colombia): características morfoestructurales y consecuencias de su interpretación

Resumen

Las áreas montañosas con fuertes pendientes topográficas suelen acusar fenómenos de deslizamientos gravitatorios someros que atenúan la prominencia del relieve como el ocurrido en Guando. La naturaleza multicomposicional de los volúmenes rocosos involucrados, la incidencia climática y la acción de la sismicidad pueden desencadenar deslizamientos que ajustan la topografía a niveles de mayor estabilidad. De este modo, la interpretación tectónica compresional frecuentemente responsable y característica de estos relieves está afectada por rasgos atribuidos a fenómenos más recientes y someros de tipo gravitatorio. Así, se puede involucrar dentro de un mismo proceso deformativo a los cabalgamientos con los deslizamientos gravitatorios si se los considera cronológicamente contemporáneos. Si se localizan sobre objetivos exploratorios infrayacentes al ser atravesados con sondeos, pueden producirse bloqueos y colapsos de las herramientas de perforación en función de los desplazamientos que ocurren sobre las superficies subhorizontales del deslizamiento. El objetivo de este trabajo es describir rasgos morfoestructurales topográficos y de subsuelo característicos de los desplazamientos gravitatorios involucrados en la interpretación estructural compresional convencional y los problemas técnicos que pueden generar en las actividades exploratorias. Al respecto, se proporciona una descripción 3D del caso del Campo Guando en la Cuenca Superior del Magdalena (Colombia) con un ejemplo real de las posibles causas y consecuencias de esta problemática.

Palabras clave: Deslizamiento gravitatorio, Interpretación estructural, Tectónica, Campo Guando, Colombia

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Eduardo Antonio Rossello, Universidad de Buenos Aires

Consejo Nacional de Investigaciones Científicas y Técnicas – Instituto de Geología y Ciencias Básicas de
Buenos Aires, Facultad de Ciencias Exactas y Naturales

Referencias

Alcántara-Ayala, I. (2000). Landslides: ¿deslizamientos o movimientos del terreno? Definición, clasificaciones y terminología. Investigaciones Geográficas, 41, 7-25. https://doi.org/10.14350/rig.59101

Alcántara-Ayala, I.; Echavarría-Luna, A.; Gutiérrez-Martínez, C.; Domínguez-Morales, L.; Noriega-Rioja, I. (2014). Inestabilidad de laderas. Centro Nacional de Prevención de Desastres (México), Serie Fascículos (2da. Versión electrónica), 39 pp.

Alsop, G.I.; Marco, S.; Weinberger, R.; Levi, T. (2017). Upslope-verging back thrusts developed during downslope-directed slumping of mass transport deposits. Journal of Structural Geology, 100, 45-61. https://doi.org/10.1016/j.jsg.2017.05.006

Arévalo-Chaves, D.A.; Parias-Villalba, J.P. (2013). Análisis de amenaza por fenómenos de remoción en masa en la región del Boquerón ubicada entre los departamentos de Cundinamarca y Tolima mediante el uso de un Sistema de información geográfica de libre distribución. Tesis, Universidad Católica de Colombia, Bogotá, Colombia.

Barrero, D.; Pardo, A.; Vargas, C.A.; Martínez, J.F. (2007). Colombian sedimentary basins: nomenclature, boundaries and petroleum geology, a new proposal. Agencia Nacional de Hidrocarburos - B&M Exploration Ltda.

Buitrago, J. (1994). Petroleum Systems of the Neiva Area, Upper Magdalena Valley, Colombia. In: L.B. Magoon; W.G. Dow (eds.). The Petroleum System – from source to trap (pp. 483-497). AAPG, Memoir 60.

Cobbold, P.R.; Davy, P.; Gapais, D.; Rossello, E.A.; Sadybakasov, E.; Thomas, J.C.; Tondji-Biyo, J.J.; Urreiztieta, M. (1993). Sedimentary basins and crustal thickening. Sedimentary Geology, 86(1-2), 77-89. https://doi.org/10.1016/0037-0738(93)90134-Q

Cobbold, P.R.; Rossello, E.A.; Roperch, P.; Arriagada, C.; Gómez, L.A.; Lima, C. (2007). Distribution, timing, and causes of Andean deformation across South America. Geological Society, London, Special Publications, 272, 321-343. https://doi.org/10.1144/GSL.SP.2007.272.01.17

Cooper, M.A.; Addison, F.T.; Alvarez, R.; Coral, M.; Graham, R.H.; Hayward, A.B.; Howe, S.; Martinez, J.; Naar, J.; Peñas, R.; Pulham, A.J.; Taboada, A. (1995). Basin development and tectonic history of the Llanos Basin, Eastern Cordillera and Magdalena Valley, Colombia. AAPG Bulletin, 79(10), 1421-1443. https://doi.org/10.1306/7834D9F4-1721-11D7-8645000102C1865D

Cossio, U.; Rodríguez, G.; Rodríguez, M. (1995). Geología de la Plancha 283 Purificación. Escala 1:100.000. INGEOMINAS.

Crozier, M.J. (1986). Landslides: causes, consequences and environment. Croom Helm.

Cruden, D.M.; Varnes, D.J. (1996). Landslide types and processes. In: A.K. Turner; R.L. Schuster (eds). Landslides investigation and mitigation (pp. 36-75). US National Research Council. Special Report 247, Chapter 3.

De Freitas, M.G. (2001). Exploring for subthrust traps in a transpressional setting – A review of unsuccessful results and strategies for improvement in the Upper Magdalena Valley of Colombia. AAPG Hedberg Conference, Mendoza, Argentina.

De Freitas, M.G.; Vidal, G.; Mantilla, M. (2006). Structural evolution and hydrocarbon entrapment in the Balcon field area, Upper Magdalena Valley, Colombia. IX Simposio Bolivariano de Exploración Petrolera en Cuencas Subandinas. Cartagena, Colombia. https://doi.org/10.3997/2214-4609-pdb.111.193

Dikau, R.; Brunsdsen, D.; Schrott, L.; Ibsen, M.K. (1996). Landslides recognition: identification, movement and causes. John Wiley & Sons.

Dingle, R.V. (1977). The anatomy of a large submarine slump on a sheared continental margin (SE Africa). Journal of the Geological Society, 134(3), 293-310. https://doi.org/10.1144/gsjgs.134.3.0293

Easterbrook, D.J. (1993). Surfaces processes and landforms. (2nd ed). Prentice Hall

Glade, T.; Anderson, M.; Crozier, M.J. (2012). Landslide hazard and risk. John Wiley & Sons. https://doi.org/10.1002/9780470012659

Gómez, E.; Jordan, T.E.; Allmendinger, R.W.; Hegarty, K.; Kelley, S.; Heizler, M. (2003). Controls on architecture of the Late Cretaceous to Cenozoic southern Middle Magdalena Valley Basin, Colombia. GSA Bulletin, 115(2), 131-147. https://doi.org/10.1130/0016-7606(2003)115%3C0131:COAOTL%3E2.0.CO;2

Gostelow, T.P. (1991). Rainfall and landslides. In: M.E. Almeida-Teixeira; R. Fantechi; R. Oliveira; A. Gomes-Coelho (eds.). Prevention and control of landslides and other mass movements (pp. 139-161). Commission of the European Communities. Report EUR 12918.

Girty, G.H. (2009). Perilous Earth: Understanding Processes behind Natural Disasters. Chapter 7, Montezuma Publishing.

Hansen, M.C. (2000). Earthquakes and seismic risk in Ohio. Ohio Department of Natural Resources, Division of Geological Survey.

Hennings, P.; Olson, J.; Thompson, L. (2000). Combining outcrop data and three-dimensional structural models to characterize fracture reservoirs: an example from Wyoming. AAPG Bulletin, 84(6), 830-849. https://doi.org/10.1306/A967340A-1738-11D7-8645000102C1865D

Hergarten, S.; Robl, J.; Stüwe, K. (2014). Extracting topographic swath profiles across curved geomorphic features. Earth Surface Dynamics, 2, 97-104. https://doi.org/10.5194/esurf-2-97-2014

Higuera, D.A. (2012). Modelo petrofísico integrado del Grupo Guadalupe, aplicado al Campo Matachín Norte. MSc. Thesis, Universidad Nacional de Colombia, Bogotá, Colombia.

Hungr, O.; Leroueil, S.; Picarelli, L. (2013). The Varnes classification of landslide types, an update. Landslides 11, 167-194. https://doi.org/10.1007/s10346-013-0436-y

Hutchinson, J.N. (1988). General report, morphological and geotechnical parameters if landslides in relation to Geology and Hydrogeoloy. 5th International Symposium on Landslides. Balkema, Rotterdam.

Hutchinson, J.N.; Bhandari, R.K. (1971). Undrained loading, a fundamental mechanism of mudflows and other mass movements. Géotechnique, 21(4), 353-358. https://doi.org/10.1680/geot.1971.21.4.353

Jaimes, E.; De Freitas, M. (2006). An Albian-Cenomanian unconformity in the Northern Andes: Evidence and tectonic significance. Journal of South American Earth Sciences, 21(4), 466-492. https://doi.org/10.1016/j.jsames.2006.07.011

Leroueil, S.; Locat, J.; Vaunat, J.; Picarelli, L.; Lee, H.; Faure, R. (1996). Geotechnical characterization of slope movements. In: K. Senneset (ed.) Landslides. Balkema, Rotterdam.

Mojica, J.; Franco, R. (1990). Estructura y evolución tectónica del Valle Medio y Superior del Magdalena, Colombia. Geología Colombiana, 17, 41-64.

Montes, C.; Hatcher, R.; Restrepo-Pace, P. (2005). Tectonic reconstruction of the northern Andean blocks: Oblique convergence and rotations derived from the kinematics of the Piedras-Girardot area, Colombia. Tectonophysics, 399(1-4), 221-250. https://doi.org/10.1016/j.tecto.2004.12.024

Mora, A.; Mantilla, M.; De Freitas, M. (2010). Cretaceous paleogeography and sedimentation in the Upper Magdalena and Putumayo Basins, Southwestern Colombia. Search and Discovery, Article #50246, AAPG.

Nemčok, A.; Pašek, J.; Rybář, J. (1972). Classification of landslides and other mass movements. Rock Mechanics, 4, 71-78. https://doi.org/10.1007/BF01239137

Ng, K.S.; Chew, Y.M. (2019). Slope stability analysis of embankment over stone column improved ground. Journal of Engineering Science and Technology, 14(6), 3582-3596.

Pfiffner, O.A. (2017). Thick-skinned and thin-skinned tectonics: A global perspective. Geosciences, 7(3). https://doi.org/10.3390/geosciences7030071

Price, N.J.; Cosgrove, J.W. (1990). Analysis of geological structures. Cambridge University Press.

Ramsay, J.G.; Huber, M.I. (1983). The techniques of modern structural geology: strain analyses. Academic Press.

Rincón, G.; Garzón, J.C.; de Moraes, J.J. (2003). Campo Guando, Primer Descubrimiento de la Antesala del Siglo XXI en el Valle Superior del Magdalena, Colombia. 8th Simposio Bolivariano - Exploración Petrolera en las Cuencas Subandinas. Cartagena, Colombia.

Rossello, E.A. (2001). Sistemas tectónicos transcurrentes: una síntesis de sus condiciones mecánicas y aplicaciones geoeconómicas. En: J.M. Cortés; E.A. Rossello; L. Dalla-Salda (eds.). Avances en Microtectónica (pp. 19-43). Asociación Geológica Argentina Serie D: Publicación Especial No. 5.

Rossello, E.A.; Saavedra, J.L. (2016). Relaciones estructurales entre el cabalgamiento Boquerón y deslizamientos gravitatorios en el Campo Guando (Valle Superior del Magdalena, Colombia). XII Simposio Bolivariano de Cuencas Subandinas, Bogotá, Colombia.

Sassa, K. (1999). Introduction. In: K. Sassa (ed). Landslides of the world (pp. 3-18). Kyoto University Press.

Sarmiento, L.F.; Rangel, A. (2004). Petroleum systems of the Upper Magdalena Valley, Colombia. Marine and Petroleum Geology, 21(3), 373-391. https://doi.org/10.1016/j.marpetgeo.2003.11.019

Sarmiento-Rojas, L.F.; Van Wess, J.D.; Cloetingh, S. (2006). Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Journal of South American Earth Sciences, 21, 383-411. https://doi.org/10.1016/j.jsames.2006.07.003

Schamel, S. (1991). Middle and Upper Magdalena Basins, Colombia. In: K.T. Biddle (ed.). Active margin basins (pp. 283-301). Chapter 10. AAPG, Memoir, 52.

Schuster, R.L.; Salcedo, D.A.; Valenzuela, L. (2002). Overview of catastrophic landslides of South America in the twentieth century. In: S.G. Evans; J.V. DeGraff (eds.). Catastrophic Landslides: effects, occurrence, and mechanisms (pp. 1-34). The Geological Society of America. Reviews in Engineering Geology, vol. XV. https://doi.org/10.1130/REG15-p1

Seed, H.B.; Wilson, S.D. (1967). The Turnagain Heights landslide in Anchorage, Alaska. American Society of Civil Engineering. Journal of the Soil Mechanics and Foundations Division, ASCE, 93, 325-353.

Serra, O. (2008). Well logging Handbook. Technip Editions.

Sharpe, C.F. (1938). Landslides and related phenomena. Columbia University Press.

Terzaghi, K.; Peck, R.B. (1967). Soil mechanics in engineering practice. (2nd Ed.). Wiley.

Tiampo, K.F.; González, P.J.; Samsonov, S.S. (2013). Results for aseismic creep on the Hayward fault using polarization persistent scatterer InSAR. Earth and Planetary Science Letters, 367, 157-165. https://doi.org/10.1016/j.epsl.2013.02.019

Tofani, V.; Raspini, F.; Catani, F.; Casagli, N. (2013). Persistent Scatterer Interferometry (PSI) technique for landslide characterization and monitoring. Remote Sensing, 5(3), 1045-1065. https://doi.org/10.3390/rs5031045

Toro, J.; Roure, F.; Bordas-Le Floch, N.; Le Cornec-Lance, S.; Sassi, W. (2004). Thermal and kinematic evolution of the Eastern Cordillera fold and thrust belt, Colombia. In: R. Swennen; F. Roure; J.W. Granath (eds.). Deformation, fluid flow, and reservoir appraisal in foreland fold and thrust belts (pp. 79-115). AAPG Hedberg Series.

Uenzelmann-Neben, G.; Huhn, K. (2009). Sedimentary deposits on the southern South African continental margin: Slumping versus non-deposition or erosion by oceanic currents? Marine Geology, 266(1-4), 65-79. https://doi.org/10.1016/j.margeo.2009.07.011

Varnes, D.J. (1958). Tipos y procesos de deslizamientos de tierra. En: E.B. Eckel (ed.). Derrumbes y prácticas de ingeniería (pp. 20-47). Junta de Investigación de Carreteras. 29, Publicación 544 de NAS NRC.

Varnes, D.J. (1978). Slope movement types and processes. In: R.L. Schuster; R.J. Krizek (eds). Landslides, analysis and control (pp. 11-33). Special report 176: Transportation research board, National Academy of Sciences. Chapter 2.

Waltham, A.C.; Dixon, N. (2000). Movement of the Mam Tor landslide, Derbyshire, UK. Quarterly Journal of Engineering Geology and Hydrogeology, 33(2), 105-123. https://doi.org/10.1144/qjegh.33.2.105

Working Party for World Landslide Inventory (1995). A suggested method for describing the rate of movement of a landslide. Bulletin of the International Association of Engineering Geology, 52, 75 78. https://doi.org/10.1007/BF02602683

Yan, G.; Yin, Y.; Huang, B.; Zhang, Z.H.; Zhu, S.N. (2019). Formation mechanism and characteristics of the Jinjiling landslide in Wushan in the Three Gorges Reservoir region, China. Landslides, 16(11), 2087-2101. https://doi.org/10.1007/s10346-019-01234-3

Záruba, Q.; Mencl, V. (1969). Landslides and their control. Elsevier. Amsterdam, 270pp.
Publicado
2020-09-30
Sección
Artículos científicos