Vol. 44 No. 2 (2022): Boletín de Geología
Artículos científicos

Rainfall thresholds as triggering factor in the Central cordillera of the Colombian Andes

Edier Aristizábal
Universidad Nacional de Colombia
Felipe Riaño
Universidad Distrital Francisco José de Caldas
Julián Jiménez-Ortiz
Universidad Nacional de Colombia

Published 2022-07-07

Keywords

  • Landslides,
  • Rainfall,
  • Hazard,
  • Early warning system

How to Cite

Aristizábal, E., Riaño, F., & Jiménez-Ortiz, J. (2022). Rainfall thresholds as triggering factor in the Central cordillera of the Colombian Andes. Boletín De Geología, 44(2), 183–197. https://doi.org/10.18273/revbol.v44n2-2022009

Altmetrics

Abstract

The Colombian Andes are characterized by its tropical climate and mountainous topography, where short duration and high intensity rainfall events are common. Rainfall often triggers hydrometeorological hazards caused by diverse concatenated processes. The analysis of historical rainfall records plays a key role for understanding landslide occurrence and its relationship with antecedent precipitation as triggering factor. This analysis was realized with satellite rainfall data with daily temporal resolution and 25 km2 as spatial resolution, with the purpose to find a rainfall pattern of the antecedent cumulative rainfall for 90 days using 100 landslides registered in the database of SIMMA and DesInventar. The results indicate that the role of rainfall as the main triggering factor in the foothills of the Llanos is controlled by the soil permeability. In fine soils, antecedent rainfall is fundamental, while for sandy soils it plays a secondary role. This relationship makes it possible to propose an Early Warning System (SAT) based on triggering rainfall and historical antecedent rain conditions.

Downloads

Download data is not yet available.

References

  1. Alonso, E.E.; Gens, A.; Delahaye, C.H. (2003). Influence of rainfall on the deformation and stability of a slope in overconsolidated clays: A case study. Hydrogeology Journal, 11(1), 174-192. https://doi.org/10.1007/s10040-002-0245-1
  2. Anderson, M.; Lloyd, D. (1991). Using a combined slope hydrology - Stability model to develop cut slope design charts. Proceedings of the Institution of Civil Engineers, 91(4), 705-718. https://doi.org/10.1680/iicep.1991.17486
  3. Aristizábal, E.; Gamboa, M.F.; Leoz, F.J. (2010a). Sistema de alerta temprana por movimientos en masa inducidos por lluvia para el Valle de Aburrá, Colombia. Revista EIA, 13, 155-169.
  4. Aristizábal, E.; Martínez, H.; Vélez, J.I. (2010b). Una revisión sobre el estudio de movimientos en masa detonados por lluvias. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 34(131), 209-227.
  5. Aristizábal, E.; González, T.; Montoya, J.D.; Vélez, J.I.; Martínez, H.; Guerra, A. (2011). Análisis de umbrales empíricos de lluvia para el pronóstico de movimientos en masa en el Valle de Aburrá, Colombia. Revista EIA, 15, 95-111.
  6. Aristizábal, E.; Vélez, J.I.; Martínez, H.E.; Jaboyedoff, M. (2016). SHIA_Landslide: a distributed conceptual and physically based model to forecast the temporal and spatial occurrence of shallow landslides triggered by rainfall in tropical and mountainous basins. Landslides, 13(3), 497-517. https://doi.org/10.1007/s10346-015-0580-7
  7. Aristizábal, E.; Sanchéz, O. (2020). Spatial and temporal patterns and socioeconomic impact of landslides in the tropical and mountainous Colombian Andes. Disasters, 44(3), 596-618. https://doi.org/10.1111/disa.12391
  8. Bogaard, T.; Greco, R. (2018). Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: Proposing hydro-meteorological thresholds. Natural Hazards and Earth System Sciences, 18(1), 31-39. https://doi.org/10.5194/nhess-18-31-2018
  9. Borga, M.; Dalla-Fontana, G.; Da Ros, D.; Marchi, L. (1998). Shallow landslide hazard assessment using a physically based model and digital elevation data. Environmental Geology, 35(2-3), 81-88. https://doi.org/10.1007/s002540050295
  10. Brocca, L.; Ponziani, F.; Moramarco, T.; Melone, F.; Berni, N.; Wagner, W. (2012). Improving landslide forecasting using ASCAT-derived soil moisture data: a case study of the torgiovannetto landslide in central Italy. Remote Sensing, 4(5), 1232-1244. https://doi.org/10.3390/rs4051232
  11. Burton, A.; Bathurst, J.C. (1998). Physically based modelling of shallow landslide sediment yield at a catchment scale. Environmental Geology, 35(2-3), 89-99. https://doi.org/10.1007/s002540050296
  12. Caine, N. (1980). The rainfall intensity-duration control of shallow landslides and debris flows. Geografiska Annaler. Series A, Physical Geography, 62(1-2), 23-27. https://doi.org/10.2307/520449
  13. Campbell, R.H. (1975). Soil slips, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, southern California. U.S. Geological Survey Professional. https://doi.org/10.3133/PP851
  14. Campos, A.; Holm-Nielsen, N.; Díaz, C.; Rubiano, D.M.; Costa, C.; Ramírez, F.; Dickson, E. (2012). Resumen ejecutivo. Análisis de la gestión del riesgo de desastres en Colombia. Un aporte para la construcción de políticas públicas. Banco Mundial, Bogotá.
  15. Chen, H.; Dadson, S.; Chi, Y.G. (2006). Recent rainfall-induced landslides and debris flow in northern Taiwan. Geomorphology, 77(1-2), 112-125. https://doi.org/10.1016/j.geomorph.2006.01.002
  16. Chleborad, A.F.; Baum, R.L.; Godt, J.W. (2006). Rainfall thresholds for forecasting landslides in the Seattle, Washington, area—Exceedance and probability. U.S. Geological Survey, Open-File Report, 2006-1064. https://doi.org/Open-FileReport 2006–1064
  17. Cho, S.E.; Lee, S.R. (2001). Instability of unsaturated soil slopes due to infiltration. Computers and Geotechnics, 28(3), 185-208. https://doi.org/10.1016/S0266-352X(00)00027-6
  18. Cho, S.E.; Lee, S.R. (2002). Evaluation of surficial stability for homogeneous slopes considering rainfall characteristics. Journal of Geotechnical and Geoenviromental Engineering, 128(9), 756-763. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:9(756)
  19. Coe, J.A. (2012). Regional moisture balance control of landslide motion: Implications for landslide forecasting in a changing climate. Geology, 40(4), 323-326. https://doi.org/10.1130/G32897.1
  20. Collins, B.D.; Znidarcic, D. (2004). Stability Analyses of Rainfall Induced Landslides. Journal of Geotechnical and Geoenvironmental Engineering, 130(4), 362-372. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(362)
  21. Crosta, G. (1998). Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Environmental Geology, 35(2-3), 131-145. https://doi.org/10.1007/s002540050300
  22. Crosta, G.B.; Frattini, P. (2001). Rainfall thresholds for triggering soil slips and debris flow. Siena, 1, 463-487.
  23. Crosta, G.B; Frattini, P. (2003). Distributed modelling of shallow landslides triggered by intense rainfall. Natural Hazards and Earth System Sciences, 3, 81-93. https://doi.org/10.5194/nhess-3-81-2003
  24. Crozier, M.J. (1999). Prediction of rainfall-triggered landslides: a test of the antecedent water status model. Earth Surface Processes and Landforms, 24(9), 825-833. https://doi.org/10.1002/(SICI)1096-9837(199908)24:9<825::AIDESP14>3.0.CO;2-M
  25. DesInventar (2018). Colombia - Inventario de Desastres Antioquia - DAPARD. 1894 - 2018-04-09.
  26. Echeverri, O.; Valencia, Y. (2004). Análisis de los deslizamientos en la cuenca de la Quebrada La Iguaná de la ciudad de Medellín a partir de la integración lluvia - pendiente – formación geológica. DYNA, 71(142), 33-45.
  27. García, E.; Uchimura, T. (2007). Study of failure mechanism in embankments induced by rainfall infiltration by monitoring pore water pressures and water contents. Dyna, 74(152), 125-135.
  28. Glade, T.; Crozier, M.; Smith, P. (2000). Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “antecedent daily rainfall model”. Pure and Applied Geophysics, 157(6-8), 1059-1079. https://doi.org/10.1007/s000240050017
  29. Gómez, J. (2002). Esquema de ordenamiento territorial municipio de Ataco, Tolima. Documento Técnico II: Geología, geomorfología y fisiografía. Jorge H. Morales G.
  30. Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. (2008). The rainfall intensity–duration control of shallow landslides and debris flows: An update. Landslides, 5(1), 3-17. https://doi.org/10.1007/s10346-007-0112-1
  31. Hermanns, R.L.; Valderrama, P.; Fauqué, L.; Penna, I.M.; Sepúlveda, S.; Moreiras, S.; Zavala-Carrión, B. (2012). Landslides in the Andes and the need to communicate on an interandean level on landslide mapping and research. Revista de la Asociación Geológica Argentina, 69(3), 321-327.
  32. Hernández, O.L.; Naranjo, L.G. (2007). Geografía del Piedemonte Andino – Amazónico. En: L.G. Naranjo (ed.). Escenarios de conservación en el piedemonte Andino-Amazónico de Colombia (pp. 1-6). WWF Colombia - Instituto de Investigación de Recursos Biológicos Alexander von Humboldt - Unidad de Parques Nacionales Naturales de Colombia.
  33. Iverson, R.M. (2000). Landslide triggering by rain infiltration. Water Resources Research, 36(7), 1897-1910. https://doi.org/10.1029/2000wr900090
  34. Kay, J.N.; Chen, T. (1995). Rainfall-Landslide relationship for Hong Kong. Geotechnical Engineering, 113(2), 117-118. https://doi.org/10.1680/igeng.1995.27592
  35. Keefer, D.K.; Wilson, R.C.; Mark, R.K.; Brabb, E.E.; Brown, W.M.; Ellen, S.D.; Harp, E.L.; Wieczorek, G.F.; Alger, C.S.; Zatkin, R.S. (1987). Real-time landslide warning during heavy rainfall. Science, 238(4829), 921-925. https://doi.org/10.1126/science.238.4829.921
  36. Kirschbaum, D.; Stanley, T.; Zhou, Y. (2015). Spatial and temporal analysis of a global landslide catalog. Geomorphology, 249, 4-15. https://doi.org/10.1016/j.geomorph.2015.03.016
  37. Li, A.G.; Yue, Z.Q.; Tham, L.G.; Lee, C.F.; Law, K.T. (2005). Field-monitored variations of soil moisture and matric suction in a saprolite slope. Canadian Geotechnical Journal, 42(1), 13-26. https://doi.org/10.1139/t04-069
  38. Marra, F. (2019). Rainfall thresholds for landslide occurrence: Systematic underestimation using coarse temporal resolution data. Natural Hazards, 95(3), 883-890. https://doi.org/10.1007/s11069-018-3508-4
  39. Mirus, B.B.; Becker, R.E.; Baum, R.L.; Smith, J.B. (2018). Integrating real-time subsurface hydrologic monitoring with empirical rainfall thresholds to improve landslide early warning. Landslides, 15(10), 1909-1919. https://doi.org/10.1007/s10346-018-0995-z
  40. Montgomery, D.R.; Dietrich, W.E. (1994). A phycically based model for the topographic control on shallow landsliding. Water Resources Research, 30(4), 1153-1171. https://doi.org/10.1029/93WR02979
  41. Mora, A.; Venegas, D.; Vergara, L. (1998). Estratigrafía del Cretácico Superior y Terciario Inferior en el Sector Norte de la Cuenca del Putumayo, Departamento del Caquetá, Colombia. Geología Colombiana, 23, 31-77.
  42. Morales, C.J.; Caicedo, J.C.; Velandia, F.A.; Núñez, A. (2001). Geología de la Plancha 345 Campoalegre. Escala 1:100.000. Memoria Explicativa. INGEOMINAS.
  43. Moreno, H.A.; Vélez, M.V.; Montoya, J.D.; Rhenals, R.L. (2006). La lluvia y los deslizamientos de tierra en Antioquia: análisis de su ocurrencia en las escalas interanual, intraanual y diaria. Revista EIA, 5, 59-69.
  44. Moser, M.; Hohensinn, F. (1983). Geotechnical aspects of soil slips in Alpine regions. Engineering Geology, 19(3), 185-211. https://doi.org/10.1016/0013-7952(83)90003-0
  45. Muntohar, A.S.; Liao, H.J. (2008). Analysis of rainfall-induced infinite slope failure during typhoon using a hydrological-geotechnical model. Environmental Geology, 56(6), 1145-1159. https://doi.org/10.1007/s00254-008-1215-2
  46. Murcia-García, U.G.; Cardona-Vanegas, G.I.; Alonso, J.C.; Salazar-Cardona, C.A.; Acosta, L.E.; Giraldo, B.; Cárdenas, D.; Hérnández, M.S.; Rodríguez, C.H.; Zubieta, M. (2007). Balance anual sobre el estado de los ecosistemas y el ambiente de la Amazonia colombiana 2006. Ministerio de Ambiente, Vivienda y Desarrollo Territorial de Colombia – Instituto Amazónico de Investigaciones Científicas SINCHI.
  47. Petley, D. (2010). Landslide hazards. In: I. Alcántara-Ayala, A. Goudie (eds.). Geomorphological Hazards and Disaster Prevention (pp. 63-74). Cambridge University Press. https://doi.org/10.1017/CBO9780511807527.006
  48. Petley, D. (2012). Global patterns of loss of life from landslides. Geology, 40(10), 927-930. https://doi.org/10.1130/g33217.1
  49. Pradel, D.; Raad, G. (1993). Effect of permeability on surficial stability of homogeneous slopes. Journal of Geotechnical Engineering, 119(2), 315-332. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:2(315)
  50. Rahardjo, H.; Leong, E.C.; Rezaur, R.B.; Tang, S.K.; Qua, C.N. (2001). Rainfall-induced slope failures: mechanism and assessment. Civil Engineering Research Bulletin, 14, 1-4.
  51. Rahardjo, H.; Ong, T.H.; Rezaur, R.B.; Leong, E.C. (2007). Factors controlling instability of homogeneous soil slopes under rainfall. Journal of Geotechnical and Geoenvironmental Engineering, 133(12), 1532-1543. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1532)
  52. Rahimi, A.; Rahardjo, H.; Leong, E.C. (2010). Effect of hydraulic properties of soil on rainfall-induced slope failure. Engineering Geology, 114(3-4), 135-143. https://doi.org/10.1016/j.enggeo.2010.04.010
  53. Reid, L.M.; Page, M.J. (2003). Magnitude and frequency of landsliding in a large New Zealand catchment. Geomorphology, 49(1-2), 71-88. https://doi.org/10.1016/s0169-555x(02)00164-2
  54. Reid, E.M. (1997). Slope instability caused by small variations in hydraulic conductivity. Journal of Geotechnical and Geoenvironmental Engineering, 123(8), 717-725.
  55. Roccati, A.; Faccini, F.; Luino, F.; Turconi, L.; Guzzetti, F. (2018). Rainfall events with shallow landslides in the Entella catchment, Liguria, Northern Italy. Natural Hazards and Earth System Sciences, 18(9), 2367-2386. https://doi.org/10.5194/nhess-18-2367-2018
  56. SGC (2010). Memoria técnica de la plancha 5-18: Mapa de permeabilidades de Colombia en escala 1:500.000. Bogotá. Servicio Geológico Colombiano.
  57. SGC (2015a). Geología de la plancha 304: La Uribe. Bogotá. Servicio Geológico Colombiano.
  58. SGC (2015b). Geología de la plancha 391: Lusitania. Bogotá. Servicio Geológico Colombiano.
  59. SGC-IDEAM. (2015). Mapa de amenaza relativa por movimientos en masa 1:100.000.
  60. Starkel, L. (1978). The role of extreme meteorological events in the shaping of mountain relief. Geographia Polonica, 41, 13-20.
  61. Tsaparas, I.; Rahardjo, H.; Toll, D.G.; Leong, E.C. (2002). Controlling parameters for rainfallinduced landslides. Computers and Geotechnics, 29(1), 1-27. https://doi.org/10.1016/S0266-352X(01)00019-2
  62. Terlien, M. (1998). The determination of statistical and deterministic hydrological landslide-triggering thresholds. Environmental Geology, 35(2-3). 124-130. https://doi.org/10.1007/s002540050299
  63. Valenzuela, P.; Domínguez-Cuesta, M.J.; Mora-García, M.A.; Jiménez-Sánchez, M. (2018). Rainfall thresholds for the triggering of landslides considering previous soil moisture conditions (Asturias, NW Spain). Landslides, 15(2), 273-282. https://doi.org/10.1007/s10346-017-0878-8
  64. Van Westen, C.J.; Soeters, R.; Rengers, N. (1994). GISSIZ: training package Geographical Information Systems in slope instability zonation. University of Twente.
  65. Wang, G.; Sassa, K. (2003). Pore-pressure generation and movement of rainfall-induced landslides: effects of grain size and fine-particle content. Engineering Geology, 69(1-2), 109-125. https://doi.org/10.1016/S0013-7952(02)00268-5
  66. Wang, F.; Shibata, H. (2007). Influence of soil permeability on rainfall-induced flowslides in laboratory flume tests. Canadian Geotechnical Journal, 44(9), 1128-1136. https://doi.org/10.1139/T07-042
  67. Wu, W.; Sidle, R.C. (1995). A distributed slope stability model for steep forested basins. Water Resources Research, 31(8), 2097-2110. https://doi.org/10.1029/95wr01136