Geochemistry and petrographic analysis of Los Cuervos and Molino formations, Cesar Sub-Basin (Colombia): Implications in the petroleum system evolution
Published 2021-05-31
Keywords
- Formación Los Cuervos,
- Formación Molino,
- Modelamiento geoquímico,
- Roca fuente,
- Subcuenca Cesar
- Cuenca Cesar Ranchería ...More
How to Cite
Altmetrics
Abstract
Las muestras de núcleo obtenidas del Pozo ANH-La Loma-1 localizado en la Subcuenca Cesar permitieron la caracterización geoquímica de las formaciones Los Cuervos y Molino. Se realizaron un total de 113 análisis de pirólisis Rock-Eval, de carbono orgánico total (COT) y de contenido de azufre total (TS), 13 análisis de reflectancia de vitrinita (%Ro) y 30 análisis petrográficos de secciones delgadas. Basados en estos nuevos datos se pudo establecer la calidad de la materia orgánica y la condición actual de la maduración termal de las formaciones. Adicionalmente, la caracterización petrográfica de 30 muestras permitió la correlación de la litología con los resultados geoquímicos. También, se realizó un modelamiento geoquímico 1D con la finalidad de aportar en el conocimiento de la evolución del sistema petrolífero de la Subcuenca Cesar. La distribución espacial de las formaciones usada en el modelamiento fue obtenida de 2 líneas sísmicas 2D en tiempo. Los resultados obtenidos indican que la Formación Los Cuervos presenta valores de COT de 0,29-66,55%, valores de TS de 0,02-11,29%, su materia orgánica es de kerógeno tipo III el cual es consistente con un estado de madurez termal inmaduro. En contraste, la Formación Molino presenta valores de COT de 0,23-2,28%, valores de TS de 0,001-1,39%, su materia orgánica es de kerógeno tipo II/III, esto sugiere una temprana entrada en ventana de generación con un valor de Tmáx de 442°C. El modelo geoquímico calibra bien con los datos medidos de paleo-geotermómetros (%Ro y Tmáx) y muestra que entre 60 – 40 Ma las formaciones Cretácicas entraron en ventana de generación de hidrocarburos y se espera que entre 40-30 Ma las formaciones Lagunitas, Aguas Blancas y La Luna se encuentren en su pico de generación de hidrocarburos.
Downloads
References
ASTM D7708-14. Standard Test Method for Microscopical Determination of the Reflectance of Vitrinite Dispersed in Sedimentary Rocks. ASTM International, West Conshohocken, PA, 2014. https://doi.org/10.1520/D7708-14
Ayala-Calvo, R.C. (2009). Análisis tectonoestratigráfico y de procedencia en la Subcuenca de Cesar: relación con los sistemas petroleros. MSc. Tesis, Universidad Simón Bolívar, Sartenejas, Venezuela.
Barker, C. (1974). Pyrolysis techniques for source-rock evaluation. AAPG Bulletin, 58(11), 2349-2361. https://doi.org/10.1306/83D91BAF-16C7-11D7-8645000102C1865D
Barrero, D.; Pardo, A.; Vargas, C.A.; Martínez, J. (2007). Colombian sedimentary basins: nomenclature, boundaries and petroleum geology, a new proposal. ANH.
Behar, F.; Beaumont, V.; De Penteado, B. (2001). Rock-Eval 6 technology: performances and developments. Oil & Gas Science and Technology, 56(2), 111-134. https://doi.org/10.2516/ogst:2001013
Carr, A.D. (2000). Suppression and retardation of vitrinite reflectance, part 1. Formation and significance for hydrocarbon generation. Journal of Petroleum Geology, 23(3), 313-343. https://doi.org/10.1111/j.1747-5457.2000.tb01022.x
Di Primio, R.; Horsfield, B. (2006). From petroleum-type organofacies to hydrocarbon phase prediction. AAPG Bulletin, 90(7), 1031-1058. https://doi.org/10.1306/02140605129
Drummond LTD. (2007). Resumen de algunos aspectos estructurales y estratigráficos del Bloque La Loma. Informe técnico.
Espitalie, J. (1986). Use of Tmax as a maturation index for different types of organic matter. Comparison with vitrinite reflectance. In: J. Burrus (ed). Thermal modelling in sedimentary basins (pp. 475-496). Editions Technip.
Espitalie, J.; Deroo, G.; Marquis, F. (1985). La pyrolyse Rock-Eval et ses applications. Première partie. Revue Institut Francais Petrole, 40(5), 563-579. https://doi.org/10.2516/ogst:1985035
Espitalie, J.; Laporte, J.L.; Madec, M.; Marquis, F.; Leplat, P.; Paulet, J.; Boutefeu, A. (1977). Méthode rapide de caractérisation des roches mères, de leur potentiel pétrolier et de leur degré d’évolution. Revue Institut Francais Petrole, 32(1), 23-45. https://doi.org/10.2516/ogst:1977002
Fakhri, M.; Tabatabaei, H.; Amiri, A. (2013). Comparing the potential of hydrocarbon generation of Kazhdomi and Pabdeh formations in Bangestan Anticline (Zagros Basin) according to Rock-Eval pyrolysis data. Journal Earth Science Climate Change, 4(5), 157. https://doi.org/10.4172/2157-7617.1000157
García, M.; Mier, R.; Arias, A.; Cortes, Y.; Moreno, M.; Salazar, O.; Jiménez, M. (2008). Prospectividad de la Cuenca Cesar-Ranchería. Grupo de Investigación en Geología de Hidrocarburos y Carbones, Universidad Industrial de Santander-ANH, Colombia.
Gil, A.; Martínez, H. (1990). Análisis micro facial del Grupo Cogollo, y Formación La Luna, cuenca Cesar Ranchería, Guajira, Colombia. Tesis, Universidad Nacional de Colombia, Bogotá.
Ghori, K.A.R. (1998). Petroleum generating potential and thermal history of the Palaeozoic, Carnarvon Basin, Western Australia. In: P.G. Purcell, R.R. Purcell (eds). The Sedimentary Basins of Western Australia (pp. 553-568). Vol. 2. Petroleum Exploration Society of Australia Limited.
Ghori, K.A.R.; Haines, P.W. (2007). Paleozoic petroleum systems of the Canning Basin, Western Australia: A review. Search and Discovery, 5-8.
Guo, Q.; Littke, R.; Zieger, L. (2018). Petrographical and geochemical characterization of subbituminous coals from mines in the Cesar-Ranchería Basin, Colombia. International Journal of Coal Geology, 191, 66-79. https://doi.org/10.1016/j.coal.2018.03.008
Hazra, B.; Wood, D.A.; Mani, D.; Singh, P.K.; Singh, A.K. (2019). Evaluation of Shale Source Rocks and Reservoirs. Springer.
Hernández, M. (2003). Memoria explicativa geología, plancha 48, Jagua de Ibirico. Escala 1:100.000, INGEOMINAS. Bogotá, Colombia.
Hernández, O.; Jaramillo, J.M. (2009). Reconstrucción de la historia termal en los sectores de Luruaco y Cerro Cansona-cuenca del Sinú-San Jacinto y en el piedemonte occidental de la Serranía del Perijá entre Codazzi y la Jagua de Ibirico-Cuenca de Cesar-Ranchería. Agencia Nacional de Hidrocarburos, Bogotá, Colombia.
Hoorn, C.; Guerrero, J.; Sarmiento, G.A.; Lorente, M.A. (1995). Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology, 23(3), 237-240. https://doi.org/10.1130/0091-7613(1995)023<0237:ATAACF>2.3.CO;2
Katz, B.J. (1995). The Green River Shale: An Eocene carbonate lacustrine source rock. In: B.J. Katz (ed.). Petroleum Source Rocks (pp. 309-324). Springer.
Kellogg, J.N. (1984). Cenozoic tectonic history of the Sierra de Perijá, Venezuela-Colombia, and adjacent basin. In: W.E. Bonini; R.B. Hargraves; R. Shagam (eds.). The Caribbean-South American Plate Boundary and Regional Tectonics (pp. 239-261). Geological Survey of America, Memoir 162.
Law, C.A. (1999). Evaluating source rocks. In: E.A. Beaumont; N.H. Foster (eds.). Treatise of Petroleum Geology / Handbook of Petroleum Geology: Exploring for Oil and Gas Traps (pp. 6-41). Chapter 6. AAPG Special Volumes.
Lewan, M.D.; Allison A.H. (1996). Gas: oil ratios for source rocks containing Type-I, II, IIS, and III kerogens as determined by hydrous pyrolysis. In: S.T. Dyman; Kuuskraa (eds.). Geologic Studies of Deep Natural Gas Resources (pp. 1-9). Chapter E. U.S. Geological Survey.
Lugo, J.; Mann, P. (1995). Jurassic–Eocene tectonic evolution of Maracaibo Basin, Venezuela. In: A.J. Tankard; R. Suárez S.; H.J. Welsink (eds.). Petroleum basins of South America (pp. 699-725). AAPG Memoir 62.
Martínez de Vivas, M.; Calderón, W.; Zamora, W.; Rodríguez, I. (2012). Modelamientos numéricos 3D de sistemas petrolíferos en la Cuenca Cesar – Ranchería: nuevas ideas acerca de su potencial petrolífero. 11th Simposio Bolivariano - Exploración Petrolera en las Cuencas Subandinas. Cartagena, Colombia.
McKenzie, D. (1978). Some remarks on the formation of sedimentary basins. Earth Planetary Science Letters, 40, 25-32.
Mesa, A.M.; Rengifo, S. (2011). Geology and hydrocarbon potential regional geology of Colombia. Cesar Ranchería Basin. Vol. 6. ANH-University EAFIT, Medellín, Colombia.
Miller, J.B. (1962). Tectonic trends in Sierra de Perijá and adjacent parts of Venezuela and Colombia. AAPG Bulletin, 46(9), 1565-1595. https://doi.org/10.1306/BC7438D3-16BE-11D7-8645000102C1865D
Montes, C.; Rodríguez-Corcho, A.F.; Bayona, G.; Hoyos, N.; Zapata, S.; Cardona, A. (2019). Continental margin response to multiple arc-continent collisions: The northern Andes Caribbean margin. Earth-Science Reviews, 198. https://doi.org/10.1016/j.earscirev.2019.102903
Mora, C.; Parra, P.; Navas, G. (2007). Caracterización geoquímica de rocas y crudos en las cuencas de Cesar-Ranchería, Sinú-San Jacinto, Chocó y área de Soápaga (Cuenca Cordillera Oriental). Informe Final. GEMS-ANH.
Mukhopadhyay, P.K. (1994). Vitrinite reflectance as maturity parameter, petrographic and molecular characterization and its applications to basin modelling. In: P.K. Mukhopadhyay; W.G. Dow (eds). Vitrinite Reflectance as a Maturity Parameter (pp. 1-24). Chapter 1. ACS symposium series no. 570. https://doi.org/10.1021/bk-1994-0570.ch001
Nuñez-Betelu, L.; Baceta, J.I. (1994). Basics and application of Rock-Eval/TOC pyrolysis: An example from the uppermost Paleocene/lowermost Eocene in the Basque Basin, Western Pyrenees. Munibe. Ciencias Naturales, 46, 43-62.
Patarroyo, G.D.; Torres, G.A.; Rincón, D.A.; Cárdenas, C.P.; Márquez, R.E. (2017). Bioestratigrafía e inferencias paleoambiéntales de las asociaciones de foraminíferos en las formaciones Cretácicas La Luna-Colón (Cuenca del Catatumbo, Colombia). Boletín de Geología, 39(3), 25-40. https://doi.org/10.18273/revbol.v39n3-2017002
Patiño, A.M.; Parra, M.; Ramírez, J.C.; Sobel, E.R.; Glodny, J.; Almendral, A.; Echeverri, S. (2019). Thermochronological constraints on Cenozoic exhumation along the southern Caribbean: The Santa Marta range, northern Colombia. In: B. Horton; A. Folguera (eds). Andean Tectonics (pp. 103-132). Chapter 5. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816009-1.00007-1
Pepper, A.S.; Corvi, P.J. (1995). Simple kinetic models of petroleum formation. Part 1: oil and gas generation from kerogen. Marine and Petroleum Geology, 12(3), 291-319. https://doi.org/10.1016/0264-8172(95)98381-E
Peters, K.E. (1986). Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bulletin, 70(3), 318-329. https://doi.org/10.1306/94885688-1704-11D7-8645000102C1865D
Peters, K.E.; Cassa, M.R. (1994). Applied source-rock geochemistry. In: L.B. Magoon; W.G. Dow (eds.). The petroleum system from source to trap (pp. 93-120). AAPG Memoir 60.
Sánchez, J.; Mann, P. (2015). Integrated structural and basinal analysis of the Cesar–Ranchería Basin, Colombia: Implications for its tectonic history and petroleum systems. In: J. Sánchez; P. Mann (eds). Petroleum geology and potential of the Colombian Caribbean margin (pp. 431-470). Chapter 16. AAPG Memoir 108. https://doi.org/10.1306/13531945M1083648
Sarmiento-Rojas, L.F. (2019). Cretaceous stratigraphy and paleo-facies maps of northwestern South America. In: F. Cediel; R.P. Shaw (eds.). Geology and Tectonics of Northwestern South America (pp. 673-747). Chapter 10. Springer. https://doi.org/10.1007/978-3-319-76132-9_10
Shagam, R.; Kohn, B.P.; Banks, P.O.; Dasch, L.E.; Vargas, R.; Rodriguez, G.I.; Pimentel. N. (1984). Tectonic implications of Cretaceous-Pliocene fission-track ages from rocks of the circum-Maracaibo Basin region of western Venezuela and eastern Colombia. In: W.E. Bonini; R.B. Hargraves; R. Shagam (eds.). The Caribbean-South American Plate Boundary and Regional Tectonics (pp. 385-412). Geological Survey of America, Memoir 162. https://doi.org/10.1130/MEM162-p385
Sieger, R.; Grobe, H. (2013). PanPlot 2 - software to visualize profiles and time series. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research: Bremerhaven, Germany. Data Publisher for Earth & Environmental Science. https://doi.org/10.1594/PANGAEA.816201
Sweeney, J.J.; Burnham, A.K. (1990). Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bulletin, 74(10), 1559-1570.
Villamil, T. (1999). Campanian-Miocene tectonostratigraphy, depocenter evolution and basin development of Colombia and western Venezuela. Palaeogeography, Palaeoclimatology, Palaeoecology, 153(1-4), 239-275. https://doi.org/10.1016/S0031-0182(99)00075-9
Wygrala, B.P. (1989). Integrated study of an oil field in the southern Po basin, Northern Italy. Thesis, Berichte Kernforschungsanlage Jülich, Germany.