Seismicity and seismotectonics for the Northern sector of the Algeciras Fault System, Eastern Cordillera, Colombia
Published 2022-01-25
Keywords
- Fault Systems,
- Colombian Llanos Foothills,
- Crustal Seismicity,
- Seismic Risk
How to Cite
Copyright (c) 2022 Boletín de Geología
This work is licensed under a Creative Commons Attribution 4.0 International License.
Altmetrics
Abstract
From the late seventeenth century, the Algeciras Fault System (AFS) has been attributed to four historical earthquakes whose magnitude recalculated from macroseismic scale analysis had a magnitude of M>6.5. One of these, that of February 9th, 1967, was instrumentally registered with a magnitude of Mw 7.2. In this work, a study was carried out in the Northern sector of this fault system between 3° and 4°N. Between October 31st, 2016, and July 18th, 2018, four earthquakes with Mw>4.8, were located by the National Seismological Network of Colombia (NSNC) in the municipality of Colombia, department of Huila, were attributed by them to the AFS. Then, on December 24th, 2019, an earthquake with Mw 6.0 was attributed by the NSCS to the Algeciras fault in the department of Meta. This fault is part of the AFS. In accordance with this research, the earthquakes in the region of Colombia occurred in the Altamira and Nazareth Faults, which are reverse faults in a tectono-stratigraphic framework different from the AFS. The AFS toward north of 3°N defines the Llanos Foothills in this region. For the Altamira and Nazareth Faults, the earthquake focal mechanisms indicated inverse faults, while in the Mesetas region its earthquake focal mechanisms indicated right lateral strike - slip faults consistent with the AFS. Because of the high generation of earthquakes with Mw>5.0 for these faults in a period of less than 10 years, here it is established that their seismogenic potential contributes in a very important way to the seismic hazard of central and southwestern Colombia. However, in this work it was also found that the so-called Algeciras Fault, the main component of the SFA in the literature, is segmented and not continuous, so its seismogenic potential should be reassessed.
Downloads
References
- AFS (2020). Alaska Satellite Facilities Data Search Vertex. Fairbanks, AK, USA: University of Alaska. https://search.asf.alaska.edu/#/
- AIS-UNIANDES-INGEOMINAS (1996). Estudio general de amenaza sísmica de Colombia. Asociación Colombiana de Ingeniería Sísmica – AIS. Comité AIS-300, Bogotá.
- Anderson, T.H.; Schmidt, V.A. (1983). The evolution of Middle America and the Gulf of Mexico - Caribbean Sea region during Mesozoic time. GSA Bulletin, 94(8), 941-966. https://doi.org/10.1130/0016-7606(1983)94<941:TEOMAA>2.0.CO;2
- Aránzazu, J.M.; Patiño, A.; Quiñones, C.; Tovar, A.; Buitrago, J.; Moreno, M.; Hincapié, G.; Castelblanco, E. (2015a). Mapa geológico de la plancha 285 San Martín. Mapa y memoria, escala 1:100000. Bogotá. Servicio Geológico Colombiano.
- Aránzazu, J.M.; Castelblanco, E.; Ceballos, L.; López, C.; Patiño, A.; Buitrago, J.; Quiñones, C.; Hincapié, G. (2015b). Geología de la plancha 305 San Juan de Arama. Mapa y memoria, escala 1:100000. Bogotá. Servicio Geológico Colombiano.
- Aránzazu, J.M.; Castelblanco, E.; Tovar, A.; Ramos, J.; Quiñones, C.; Ojeda, C.; Facio-Lince, I.; Gómez, L. (2015c). Geología de la plancha 326 Vistahermosa. Mapa y memoria, escala 1:100000. Bogotá. Servicio Geológico Colombiano.
- Aspden, J.A.; Fortey, N.; Litherland, M.; Viteri, F.; Harrison, S.M. (1992). Regional S-type granites in The Ecuadorian Andes: Possible remnants of the breakup of western Gondwana. Journal of South American Earth Sciences, 6(3), 123-132. https://doi.org/10.1016/0895-9811(92)90002-G
- Bull, W.B. (2007). Tectonic geomorphology of mountains: A new approach to paleoseismology. Blackwell Science Ltd.
- Bull, W.B. (2009). Tectonic Active Landscapes. Blackwell Science Ltd.
- Burbank, D.W.; Anderson, R.S. (2001). Tectonic Geomorphology. Blackwell Science Ltd.
- Butler, K.; Schamel, S. (1988). Structure along the eastern margin of the Central Cordillera, Upper Magdalena Valley, Colombia. Journal of South American Earth Sciences, 1(1), 109-120. https://doi.org/10.1016/0895-9811(88)90019-3
- Caicedo, J.C.; Yasir, L.H.; Acosta, G.J. (2002). Geología de la plancha 265 Icononzo, Escala 1:100.000. INGEOMINAS.
- Chicangana, G. (2005a). The Romeral Fault System: a shear and deformed extinct subduction zone between oceanic and continental lithospheres in northwestern South America. Earth Sciences Research Journal, 9(1), 50-66.
- Chicangana, G. (2005b). Estudio del Sistema de Fallas de Romeral (0,5° - 11,5° N), a partir de una caracterización sismotectónica regional. M.Sc. Tesis, Universidad Nacional de Colombia, Bogotá, Colombia.
- Chicangana, G.; Pedraza, G.P.; Vargas-Jiménez, C. (2012). Avances en el conocimiento de los patrones de sismicidad superficial en el Piedemonte Llanero colombiano, Departamentos de Casanare y Meta, Colombia. XVI Congreso Peruano de Geología, Lima, Perú.
- Chicangana, G.; Vargas, C.A. (2013). The subduction geometry change under Colombia and orogenic evolution of the northern Andes in late Neogene times. Acta Geologica Sinica, 87(Supp), 116-118.
- Chicangana, G.; Bocanegra, A.; Arboleda-Montes, L.; Kammer, A. (2020). La búsqueda del patrimonio Geoturístico en el Piedemonte Llanero Colombiano y llanuras adyacentes: implicaciones para el origen del paisaje actual. Boletín de Ciencias de la Tierra, 47, 27-38. https://doi.org/10.15446/rbct.n47.83876
- Cossio, O.U.; Rodríguez, G.G.; Rodríguez, G.M.A. (1994). Geología de la plancha 283 Purificación, Escala 1:100.000. Bogotá: INGEOMINAS.
- Cristancho, A.; Ojeda, C. (2015). Mapa geológico de la plancha 346 Cerro Neiva. Escala 1:100.000. Bogotá: Servicio Geológico Colombiano.
- DeCelles, P.G. (2012). Foreland basin systems revisited: Variations in response to tectonic settings. In: C. Busby, A. Azor. (Eds). Tectonics of Sedimentary Basins: Recent Advances (pp. 405-426). John Wiley. https://doi.org/10.1002/9781444347166.ch20
- de Joussineau, G.; Aydin, A. (2009). Segmentation along Strike-Slip Faults Revisited. Pure and Applied Geophysics, 166(10-11), 1575-1594. https://doi.org/10.1007/s00024-009-0511-4
- Diederix, H.; Bohórquez, O.P.; Mora-Páez, H.; Peláez, J.R.; Cardona, L.; Corchuelo, Y.; Ramírez, J.; Díaz-Mila, F. (2020). The Algeciras Fault System of the Upper Magdalena Valley, Huila Department. In: J. Gómez, A.O. Pinilla-Pachón (eds.). The Geology of Colombia (pp. 423-452). Volume 4. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.38.2019.12
- Ekström, G.; Nettles, M.; Dziewonski, A.M. (2012). The global CMT project 2004 - 2010: Centroidmoment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200-201, 1-9. https://doi.org/10.1016/j.pepi.2012.04.002
- ESA (2020). Copernicus Open Access Hub. Paris: The European Space Agency, European Union. https://scihub.copernicus.eu/dhus/#/home
- Espinosa, A. (2004). La historia sísmica de Colombia (1500 - 1830). GEDES - Universidad del Quindío.
- Fuquen, J.A.; Osorno, J.F. (2002). Geología de la plancha 303 Colombia, departamentos de Huila, Tolima y Meta (Escala 1:100.000). Bogotá: INGEOMINAS.
- Gómez, J.; Montes, N.E.; Nivia, A.; Diederix, H. (2015). Atlas geológico de Colombia 2015. Escala 1:500.000. Servicio Geológico Colombiano.
- Gómez, T.J.; Montes, N.E. (2021). Geologic Map of Colombia 2020. Scale 1:1.000.000. Servicio Geológico Colombiano.
- Hanks, T.C.; Bakun, W.H. (2014). M-logA models and other curiosities. Bulletin of the Seismological Society of America, 104(5), 2604-2610. https://doi.org/10.1785/0120130163
- Havskov, J.; Ottemoller, L. (1999). SeisAn Earthquake analysis software. Seismological Research Letters, 70(5), 532-534. https://doi.org/10.1785/gssrl.70.5.532
- IDEAM. (2005). Atlas Climático de Colombia. Instituto de Hidrología, Meteorología y Estudios Ambientales. http://www.ideam.gov.co/web/tiempo-y-clima/atlas
- IRIS. (2018). 1967 Huila (Colombia) Earthquake Archive. Incorporated Research Institutions for Seismology. http://www.iris.edu/seismo/quakes/1967huila/
- Kammer, A.; Támara, J.; Beltrán, A.; Robles, W. (2007). Pliegues sobrepuestos en el anticlinal de Buenavista, Piedemonte Llanero. Boletín de Geología, 29(2), 85-93.
- Kortström, J.; Uskii, M.; Tiira, T. (2016). Automatic classification of seismic events within a regional seismograph network. Computers & Geosciences, 87, 22-30. https://doi.org/10.1016/j.cageo.2015.11.006
- Mayorga, E.; Dionicio, V.; Lizarazo, M.; Pedraza, P.; Poveda, E.; Mercado, O.; Siervo, D.; Aguirre, L.; Bolaños, R.; Garzón, F.; Velásquez, L.; Castillo, L.; García, H.; Mazo, E.; Arcila, M.; Barbosa, D.; Sarabia, A.; López, M.; Díaz, F.; Valcárcel, J.; Pérez, J.; Cubillos, M.; Fandiño, J; Martínez, D.; Castillo, E.; Báez, L.; Suárez, O.; Agudelo, A.; Pérez, L.; Idárraga, J.; López, N.; Mora-Páez, H.; Corchuelo, Y.; Giraldo, L.; Gómez, E.; Bohórquez, O. (2020). El sismo de Mesetas, Meta del 24 de diciembre de 2019: aspectos sismológicos, movimiento fuerte y consideraciones geodésicas. Bogotá: Servicio Geológico Colombiano.
- McCalpin, J.P. (2009). Paleoseismology. International Geophysics Series, 95. 2nd Edition. Academic Press.
- Mogi, K. (1985). Earthquake Prediction. Academic Press.
- Mojica, J.; Kammer, A. (1995). Eventos Jurásicos en Colombia. Geología Colombiana, 19, 165-172.
- Mora, A.; Parra, M.; Strecker, M.R.; Kammer, A.; Dimaté, C.; Rodríguez, F. (2006). Cenozoic contractional reactivation of Mesozoic extensional structures in the Eastern Cordillera of Colombia. Tectonics, 25(2). https://doi.org/10.1029/2005TC001854
- Mora, A.; Parra, M.; Strecker, M.R.; Sobel, E.R.; Zeilinger, G.; Jaramillo, C.; Ferreira Da Silva, S.; Blanco, M. (2010). The eastern foothills of the Eastern Cordillera of Colombia: An example of multiple factors controlling structural styles and active tectonics. GSA Bulletin, 122(11-12), 1846-1864. https://doi.org/10.1130/B30033.1
- Muñoz-Burbano, F.J.; Vargas-Jiménez, C.A.; Chicangana, G. (2015). Sismicidad en el piedemonte llanero colombiano: caracterización, relocalización y tomografía sísmica local. Boletín de Ciencias de la Tierra, 38, 14-24. https://doi.org/10.15446/rbct.n38.45681
- Noriega-Londoño, S.; Bermúdez, M.A.; Restrepo-Moreno, S.A.; Marín-Cerón, M.I.; García-Delgado, H. (2021). Earthquake ground deformation using DInSAR analysis and instrumental seismicity: The 2019 M 6.0 Mesetas Earthquake, Meta, Colombian Andes. Boletín de la Sociedad Geológica Mexicana, 73(2). https://doi.org/10.18268/BSGM2021v73n2a090221
- Ojeda, A.; Havskov, J. (2001). Crustal structure and local seismicity in Colombia. Journal of Seismology, 5(4), 575-593. https://doi.org/10.1023/A:1012053206408
- París, G.; Machette, M.N.; Dart, R.L.; Haller, K.M. (2000). Database and Map of Quaternary faults and folds of Colombia and its offshore regions. Open - File Report 00 - 0284. Comprende mapa a escala 1:2.500.000 e informe. USGS.
- Patiño, A.; Barrantes, L.; Buitrago, J.; Cristancho, A. (2015a). Mapa geológico de la plancha 284 Santana, Escala 1:100.000. Servicio Geológico Colombiano.
- Patiño, A.; Quiñones, C.; Cristancho, A.; Zafra, M.; Cabrera, J.C. (2015b). Mapa geológico de la plancha 304 La Uribe, Escala 1:100.000. Servicio Geológico Colombiano.
- Radic, J.P. (2004). Late Cretaceous to Cenozoic evolution of the Girardot Basin, Upper Magdalena Valley, Colombian Andes. M.Sc. Thesis, Cornell University, New York, USA.
- Ramírez, J.E. (1975). Historia de los terremotos en Colombia. IGAC.
- Ramos, J.; Casas, R.; Romero, O.; Cristancho, A.; Ibáñez, R. (2015). Mapa geológico de la plancha 324 Tello. Escala 1:100.000. Bogotá: Servicio Geológico Colombiano.
- Sánchez-Villar, N.F. (2011). Desarrollo de patrones de fracturamiento y mecanismos de deformación del anticlinal de Monterralo, Piedemonte Llanero, Cordillera Oriental de Colombia. M.Sc. Tesis, Universidad Nacional de Colombia, Bogotá, Colombia.
- Sarabia, A.M.; Cifuentes, H.G.; Robertson, K. (2010). Análisis histórico de los sismos ocurridos en 1785 y en 1917 en el centro de Colombia. Cuadernos de Geografía, Revista Colombiana de Geografía, 19, 153-162. https://doi.org/10.15446/rcdg.n19.16863
- Sarmiento-Rojas, L.F; Van Wess, J.D.; Cloetingh, S. (2006). Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Journal of South American Earth Sciences, 21(4), 383-411. https://doi.org/10.1016/j.jsames.2006.07.003
- Scanvic, J.Y. (1989). Teledetección aplicada. Paraninfo.
- Scholz, Ch.H. (2002). The Mechanics of Earthquakes and Faulting. Second Edition, Cambridge University Press.
- Scholz, Ch.H. (2018). The Mechanics of Earthquakes and Faulting. Third Edition, Cambridge University Press.
- SGC (2020). Consulta información sismos. Servicio Geológico Colombiano. http://bdrsnc.sgc.gov.co/paginas1/catalogo/index.php
- SGC (2021). Catalogo Mecanismo Focal y Tensor Sísmico. Servicio Geológico Colombiano. http://bdrsnc.sgc.gov.co/sismologia1/sismologia/focal_seiscomp_3/index.html
- Tamara, J.; Mora, J.; Robles, W.; Kammer, A.; Ortiz, A.; Sanchez-Villar, N.; Piraquive, A.; Rueda, L.H.; Casallas, W.; Castellanos, J.; Montaña, J.; Parra, L.G.; Corredor, J.; Ramirez, A.; Zambrano, E. (2015). Fractured reservoirs in the Eastern Foothills, Colombia, and their relationship with fold kinematics. AAPG Bulletin, 99(8), 1599-1633. https://doi.org/10.1306/09291411109
- Toro-Toro, L.M.; Moreno-Sánchez, M.; Gómez-Cruz, A. (2014). Metagabro del Ariari, plutonismo MORB, Cordillera Oriental de Colombia. Boletín de Geología, 36(2), 15-24.
- USGS (2020). EarthExplorer. Sioux Falls, SD: USGS Earth Resources Observation and Science (EROS) Center. https://earthexplorer.usgs.gov/
- Velandia, F.; Acosta, J.; Terraza, R.; Villegas, H. (2005). The current tectonic motion of the Northern Andes along the Algeciras Fault System in SW Colombia. Tectonophysics, 399(1-4), 313-329. https://doi.org/10.1016/j.tecto.2004.12.028
- Vinasco, C.; Cordani, U.; González, H.; Vasconcelos, P.; Liu, D. (2003). Tectonomagmatic evolution of the Northern part of the Central Cordillera of Colombia using Ar-Ar and U-Pb SHRIMP Methodologies. IX Congreso Colombiano de Geología, Medellín, Colombia.
- Wells, D.L.; Coppersmith, K.J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974-1002. https://doi.org/10.1785/BSSA0840040974