Vol. 44 No. 2 (2022): Boletín de Geología
Artículos científicos

Assessment of the original gas volume in situ in unconventional gas-shale reservoirs through multiple models worldwide and its analogy to a Colombian formation

Angee Moreno-Enriquez
Universidad Industrial de Santander
Diego Vargas-Silva
Universidad Industrial de Santander
Maika Gambús-Ordaz
Universidad Industrial de Santander
Zuly Calderón-Carrillo
Universidad Industrial de Santander
Emmanuel Robles-Albarracín
Universidad Industrial de Santander

Published 2022-07-07

Keywords

  • Isotherms,
  • Source rock reservoirs,
  • Geochemistry

How to Cite

Moreno-Enriquez, A., Vargas-Silva, D., Gambús-Ordaz, M., Calderón-Carrillo, Z., & Robles-Albarracín, E. (2022). Assessment of the original gas volume in situ in unconventional gas-shale reservoirs through multiple models worldwide and its analogy to a Colombian formation. Boletín De Geología, 44(2), 109–123. https://doi.org/10.18273/revbol.v44n2-2022005

Altmetrics

Abstract

The gas can be present in the source rock, either as free gas in the porous medium, free gas in natural fractures or as gas adsorbed, which can represent up to 85% of the total volume present in the reservoir. Different inquiries have been pointed by professionals in the oil and gas industry about whether all the necessary parameters are considered in the quantification of the original gas in place volume, in order to mitigate the uncertainty in its estimation. The objective of this research is to study the main methods and correlations used to quantify the gas that is adsorbed by the rock, to finally estimate the total gas. With that said, multiple adsorption models were studied with information from the literature, in order to determine which models had the least deviation, comparing to the laboratory data. Likewise, using the characteristics of the La Luna Formation in Colombia, an analogy is proposed to estimate the possible reserves of this formation. The results showed that the models with a greater number of parameters involved presented a better fit with the laboratory data, however, models such as the three-parameter Langmuir model or the Jovanović model were very close to the real values. This guarantees a smaller error in the calculation of the total gas.

Downloads

Download data is not yet available.

References

  1. Ambrose, R.J.; Hartman, R.C.; Díaz-Campos, M.; Akkutlu, I.Y.; Sondergeld, C.H. (2012). Shale gas-in-place calculations. Part I: New pore-scale considerations. SPE Journal, 17(1), 219-229. https://doi.org/10.2118/131772-PA
  2. Amrhar, O.; Nassali, H.; Elyoubi, M. (2015). Two and three-parameter isothermal modeling for adsorption of Crystal Violet dye onto Natural Illitic Clay: Nonlinear regression analysis. Journal of Chemical and Pharmaceutical Research, 7(9), 892-903.
  3. Ayawei, N.; Ebelegi, A.N.; Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of Chemistry. https://doi.org/10.1155/2017/3039817
  4. Chun, J.H.; Jeon, S.K.; Kim, N.Y.; Chun, J.Y. (2005). The phase-shift method for determining Langmuir and Temkin adsorption isotherms of over-potentially deposited hydrogen for the cathodic H2 evolution reaction at the poly-Pt/H2SO4 aqueous electrolyte interface. International Journal of Hydrogen Energy, 30(13-14), 1423-1436. https://doi.org/10.1016/j.ijhydene.2004.12.005
  5. Dale, S. (2021). BP statistical review of world energy. BP Plc, London, United Kingdom.
  6. Favre, E.; Nguyen, Q.T.; Clement, R.; Neel, J. (1996). Application of Flory-Huggins theory to ternary polymer-solvents equilibria: A case study. European Polymer Journal, 32(3), 303-309. https://doi.org/10.1016/0014-3057(95)00146-8
  7. Farouq, R.; Yousef, N.S. (2015). Equilibrium and kinetics studies of adsorption of copper (ii) ions on natural biosorbent. International Journal of Chemical Engineering and Applications, 6(5), 319-324. https://doi.org/10.7763/ijcea.2015.v6.503
  8. Fritz, W.; Schluender, E.U. (1974). Simultaneous adsorption equilibria of organic solutes in dilute aqueous solutions on activated carbon. Chemical Engineering Science, 29(5), 1279-1282. https://doi.org/10.1016/0009-2509(74)80128-4
  9. Gasparik, M.; Ghanizadeh, A.; Bertier, P.; Gensterblum, Y.; Bouw, S.; Krooss, B.M. (2012). High-pressure methane sorption isotherms of black shales from the Netherlands. Energy & Fuels, 26(8), 4995-5004. https://doi.org/10.1021/ef300405g
  10. Glorioso, J.C.; Rattia, A. (2012). Unconventional reservoirs: Basic petrophysical concepts for shale gas. SPE/EAGE European Unconventional Resources Conference and Exhibition, Vienna, Austria. https://doi.org/10.2118/153004-ms
  11. Halsey, G. (1948). Physical adsorption on non-uniform surfaces. The Journal of Chemical Physics, 16(10), 931-937. https://doi.org/10.1063/1.1746689
  12. Hamdaoui, O.; Naffrechoux, E. (2007). Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. Journal of Hazardous Materials, 147(1-2), 381-394. https://doi.org/10.1016/j.jhazmat.2007.01.021
  13. Harkins, W.D.; Jura, G. (1944). The decrease (π) of free surface energy (γ) as a basis for the development of equations for adsorption isotherms; and the existence of two condensed phases in films on solids. The Journal of Chemical Physics, 12(3), 112-113. https://doi.org/10.1063/1.1723913
  14. Hartman, R.C.; Ambrose, R.J.; Akkutlu, I.Y.; Clarkson, C.R. (2011). Shale gas-in-place calculations part II - Multi-component gas adsorption effects. North American Unconventional Gas Conference and Exhibition, The Woodlands, USA. https://doi.org/10.2118/144097-ms
  15. Ho, Y.S. (2004). Selection of optimum sorption isotherm. Carbon, 42(10), 2115-2116. https://doi.org/10.1016/j.carbon.2004.03.019
  16. Jovanović, D.S. (1969). Physical adsorption of gases. I: Isotherms for monolayer and multilayer adsorption. Kolloid-Zeitschrift & Zeitschrift Für Polymere, 235(1), 1203-1213. https://doi.org/10.1007/BF01542530
  17. Keller, J.U.; Staudt, R. (2005). Gas adsorption equilibria: experimental methods and adsorptive isotherms. Springer Science & Business Media.
  18. Koble, R.A.; Corrigan, T.E. (1952). Adsorption isotherms for pure hydrocarbons. Industrial & Engineering Chemistry, 44(2), 383-387. https://doi.org/10.1021/ie50506a049
  19. Lewis, R.; Ingraham, D.; Pearcy, M.; Williamson, J.; Sawyer, W.; Frantz, J. (2004). New evaluation techniques for gas shale reservoirs. Reservoir Symposium.
  20. Loganathan, S.; Tikmani, M.; Ghoshal, A.K. (2015). Pore-expanded MCM-41 for CO2 adsorption: Experimental and isotherm modeling studies. Chemical Engineering Journal, 280, 9-17. https://doi.org/10.1016/j.cej.2015.05.103
  21. Marczewski, A.W.; Jaroniec, M. (1983). A new isotherm equation for single-solute adsorption from dilute solutions on energetically heterogeneous solids. Monatshefte für Chemie/Chemical Monthly, 114(6-7), 711-715. https://doi.org/10.1007/BF01134184
  22. McCarthy, K.; Rojas, K.; Niemann, M.; Palrnowski, D.; Peters, K.; Stankiewicz, A. (2011). Basic petroleum geochemistry for source rock evaluation. Oilfield Review, 23(2), 32-43.
  23. Mukhopadhyay, P.K. (1994). Vitrinite reflectance as maturity parameter. Petrographic and molecular characterization and its applications to basin modeling. ACS Symposium Series, 570, 1-24. https://doi.org/10.1021/bk-1994-0570.ch001
  24. Murillo-Martínez, C.A.; Gómez-Rodríguez, O.A.; Ortiz-Cancino, O.P.; Muñoz-Navarro, S.F. (2015). Aplicación de modelos para la generación de la isoterma de adsorción de metano en una muestra de shale y su impacto en el cálculo de reservas. Revista Fuentes El Reventón Energético, 13(2), 131-140. https://doi.org/10.18273/revfue.v13n2-2015012
  25. Radke, C.J.; Prausnitz, J.M. (1972). Adsorption of organic solutes from dilute aqueous solution of activated carbon. Industrial & Engineering Chemistry Fundamentals, 11(4), 445-451. https://doi.org/10.1021/i160044a003
  26. Samarghandi, M.R.; Hadi, M.; Moayedi, S.; Askari, F.B. (2009). Two-parameter isotherms of methyl orange sorption by pinecone derived activated carbon. Iranian Journal of Environmental Health Science and Engineering, 6(4), 285-294.
  27. Sandoval, D.R.; Yan, W.; Michelsen, M.L.; Stenby, E.H. (2018). Modeling of shale gas adsorption and its influence on phase equilibrium. Industrial and Engineering Chemistry Research, 57(17), 5736-5747. https://doi.org/10.1021/acs.iecr.7b04144
  28. Sartarelli, A.; Cyrulies, E.; Echarri, R.; Vera, S.; Samson, I. (2012). Método para la determinación de parámetros de adsorción del par metanol-carbón activado utilizado en sistemas de refrigeración solar. Avances en Energías Renovables y Medio Ambiente, 16, 8.1-8.8.
  29. Silva Da Rocha, M.; Iha, K.; Faleiros, A.C.; Corat, E.J.; Suárez-Iha, M.E. (1998). Henry’s law as a limit for an isotherm model based on a statistical mechanics approach. Journal of Colloid and Interface Science, 208(1), 211-215. https://doi.org/10.1006/jcis.1998.5779
  30. Sivarajasekar, N.; Baskar, R. (2014). Adsorption of basic red 9 onto activated carbon derived from immature cotton seeds: isotherm studies and error analysis. Desalination and Water Treatment, 52(40-42), 7743-7765. https://doi.org/10.1080/19443994.2013.834518
  31. Skopp, J. (2009). Derivation of the Freundlich adsorption isotherm from kinetics. Journal of Chemical Education, 86(11), 1341-1343. https://doi.org/10.1021/ed086p1341
  32. Stanley, C.R.; Lawie, D. (2007). Average relative error in geochemical determinations: Clarification, calculation, and a plea for consistency. Exploration and Mining Geology, 16(3-4), 267-275. https://doi.org/10.2113/gsemg.16.3-4.267
  33. TerHeege, J.H.; Zijp, M.; DeBruin, G.; Buijze, L. (2014). Upfront predictions of hydraulic fracturing and gas production in underexplored shale gas basins: Example of the posidonia shale formation in the Netherlands. 48th US Rock Mechanics / Geomechanics Symposium Minneapolis, Minnesota.
  34. van Vliet, B.M.; Weber, W.J.; Hozumi, H. (1980). Modeling and prediction of specific compound adsorption by activated carbon and synthetic adsorbents. Water Research, 14(12), 1719-1728. https://doi.org/10.1016/0043-1354(80)90107-4
  35. Vijayaraghavan, K. (2015). Biosorption of lanthanide (praseodymium) using Ulva lactuca: Mechanistic study and application of two, three, four and five parameter isotherm models. Journal of Environment and Biotechnology Research, 1(1), 10-17.
  36. Vijayaraghavan, K.; Padmesh, T.V.N.; Palanivelu, K.; Velan, M. (2006). Biosorption of nickel(II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models. Journal of Hazardous Materials, 133(1-3), 304-308. https://doi.org/10.1016/j.jhazmat.2005.10.016
  37. Walls, J.D.; Cerón, M.R.; Anderson, J. (2016). Characterizing unconventional resource potential in Colombia; A digital rock physics project. Unconventional Resources Technology Conference, San Antonio, Texas. https://doi.org/10.15530/urtec-2014-1913256
  38. Weber, T.W.; Chakravorti, R.K. (1974). Pore and solid diffusion models for fixed‐bed adsorbers. AIChE Journal, 20(2), 228-238. https://doi.org/10.1002/aic.690200204
  39. Wu, F.C.; Liu, B.L.; Wu, K.T.; Tseng, R.L. (2010). A new linear form analysis of Redlich-Peterson isotherm equation for the adsorptions of dyes. Chemical Engineering Journal, 162(1), 21-27. https://doi.org/10.1016/j.cej.2010.03.006
  40. Zhang, T.; Ellis, G.S.; Ruppel, S.C.; Milliken, K.; Lewan, M.; Sun, X. (2013). Effect of organic matter properties, clay mineral type and thermal maturity on gas adsorption in organicrich shale systems. Unconventional Resources Technology Conference, Denver, USA. https://doi.org/10.1190/urtec2013-205