Vol. 45 No. 2 (2023): Boletín de Geología
Artículos científicos

New ages, correlation and magmatic cycle of island arc plutons in the north of the Western Cordillera of Colombia

Gabriel Rodríguez-García
Servicio Geológico Colombiano
Tomás Correa-Restrepo
Servicio Geológico Colombiano
Francy H. Ortiz-Párraga
Servicio Geológico Colombiano
Mónica J. Tobón-Mazo
Servicio Geológico Colombiano
Milton G. Obando-Quintero
Servicio Geológico Colombiano
Juan R. Peláez-Gaviria
Servicio Geológico Colombiano

Published 2023-06-15

Keywords

  • Cretaceous,
  • Volcanic Arc,
  • Barroso-Sabanalarga Arc,
  • Northern Andes

How to Cite

Rodríguez-García, G., Correa-Restrepo, T., Ortiz-Párraga, F. H., Tobón-Mazo, M. J., Obando-Quintero, M. G., & Peláez-Gaviria, J. R. (2023). New ages, correlation and magmatic cycle of island arc plutons in the north of the Western Cordillera of Colombia. Boletín De Geología, 45(2), 15–33. https://doi.org/10.18273/revbol.v45n2-2023001

Altmetrics

Abstract

This paper presents new petrographic and U-Pb zircon geochronological data for plutonic bodies with island arc chemical affinity, located in the northeastern sector of the Western Cordillera of Colombia and composed by tonalites, quartz diorites, diorites, gabbros, plagiogranites and andesites from the Santa Fe de Antiquia Tonalite, Buriticá Tonalite, La Noque Tonalite and the Guarco Andesite, some of which contain mafic gabbro xenoliths and are cut by andesitic and basaltic dikes. These plutons yielded zircon U-Pb ages between 100.9 ± 0.85 Ma and 78.4 ± 6.4 Ma. Next to the plutons, the Pantanillo Granulite crops out, composed of amphibolites, granulites, and granofels that yielded crystallization ages between 91.6 ± 6.5 Ma and 84.71 ± 0.60 Ma, and is interpreted as the granulitic residue of the island arc. The results indicate that the crystallization cycle of the island arc began at ca. 100.9 ± 0.85 Ma and ended at ca. 78.4 ± 6.4 Ma. The arc plutons were emplaced in volcanic rocks with oceanic plateau affinity and vulcanites of the same arc. The spatial distribution analysis of the crystallization ages of the plutons, together with an analysis of the relative depth of melt generation shows that the ages become younger towards the east of the arc and that the depth of melting of these eastern plutons was greater, suggesting that subduction occurred in a west-to-east direction.

Downloads

Download data is not yet available.

References

  1. Álvarez, E.; González, H. (1978). Geología y geoquímica del cuadrángulo I-7, Urrao. Instituto Nacional de Investigaciones Geológico Mineras, Medellín. Informe.
  2. Aspden, J.A. (1984). The geology of the western cordillera and pacific coastal plain in the department of Valle del Cauca, sheets 261, 278, 279, 280 and 299. INGEOMINAS-MISIÓN BRITÁNICA (British Geological Survey), Cali.
  3. Botero-García, M.; Vinasco, C.J.; Restrepo-Moreno, S.A.; Foster, D.A.; Kamenov, G.D. (2023). Caribbean–South America interactions since the Late Cretaceous: Insights from zircon U–Pb and Lu–Hf isotopic data in sedimentary sequences of the northwestern Andes. Journal of South American Earth Sciences, 123, 104231. https://doi.org/10.1016/j.jsames.2023.104231
  4. Buchs, D.M.; Kerr, A.C.; Brims, J.C.; Zapata-Villada, J.P.; Correa-Restrepo, T.; Rodríguez, G. (2018). Evidence for subaerial development of the Caribbean oceanic plateau in the Late Cretaceous and palaeo-environmental implications. Earth and Planetary Science Letters, 499, 62-73. https://doi.org/10.1016/j.epsl.2018.07.020
  5. Cardona, A.; León, S.; Jaramillo, J.; Montes, C.; Valencia, V.; Vanegas, J.; Bustamante, C.; Echeverri, S. (2018). The Paleogene arcs of the northern Andes of Colombia and Panama: Insights on plate kinematic implications from new and existing geochemical, geochronological and isotopic data. Tectonophysics, 749, 88-103. https://doi.org/10.1016/j.tecto.2018.10.032
  6. Cetina, L.M.; Tassinari, C.C.; Rodríguez, G.; Correa-Restrepo, T. (2019). Origin of premesozoic xenocrystic zircons in cretaceous sub-volcanic rocks of the northern Andes (Colombia): paleogeographic implications for the region. Journal of South American Earth Sciences, 96, 102363. https://doi.org/10.1016/j.jsames.2019.102363
  7. Corfu, F.; Hanchar, J.M.; Hoskin, P.W.; Kinny, P. (2003). Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1), 469-500. https://doi.org/10.2113/0530469
  8. Correa, T.; Obando, M.G.; Zapata-Villada, J.P.; Rincón, Á.V.; Ortiz, F.H.; Rodríguez, G.; Cetina, L.M. (2018). Geología del Borde Occidental de la Plancha 130, Santa Fe de Antioquia. Escala 1:50.000. Memoria Explicativa, Servicio Geológico Colombiano, Medellín.
  9. Correa, T.; Obando, M.; Ortiz, F.; Tobón, M.; Peláez, J.; Zapata, J.P.; Rodríguez, G. (2020). Geología del Borde Occidental de la Plancha 146 Medellín Occidental. Cartografía a Escala 1:50.000, Servicio Geológico Colombiano, Medellín.
  10. Coyner, S.J.; Kamenov, G.D.; Mueller, P.A.; Rao, V.; Foster, D.A. (2004). FC-1: a Zircon Reference Standard for the Determination of Hf Isotopic Compositions via Laser Ablation ICP-MS. American Geophysical Union, Fall Meeting. V51C-0584.
  11. Dessimoz, M.; Müntener, O.; Ulmer, P (2012). A case for hornblende dominated fractionation of arc magmas: the Chelan Complex (Washington Cascades). Contributions to Mineralogy and Petrology, 163(4), 567-589. https://doi.org/10.1007/s00410-011-0685-5
  12. Duque-Caro, H. (1990). El Bloque del Chocó en el noroccidente suramericano: Implicaciones estructurales, tectonoestratigráficas y paleogeográficas. Boletín Geológico, 31(1), 47-71. https://doi.org/10.32685/0120-1425/bolgeol31.1.1990.179
  13. Geoestudios. (2005). Complementación geológica, geoquímica y geofísica de la parte occidental de las planchas 130 Santa Fe de Antioquia y 146 Medellín Occidental. Escala 1:100.000. INGEOMINAS.
  14. Geología regional y Prospección Ltda. (2014). Memoria explicativa: Plancha 341 El Plateado. Bogotá.
  15. Gómez, J.; Montes, N.; Nivia, A.; Diederix, H. (2015). Mapa Geológico de Colombia 2015. Escala 1:1’000.000. Servicio Geológico Colombiano.
  16. González, H. (2001). Mapa Geológico del Departamento de Antioquia. Escala 1:400.000. Memoria Explicativa, INGEOMINAS.
  17. He, Q.; Xiao, L.; Balta, B.; Gao, R.; Chen, J. (2010). Variety and complexity of the Late- Permian Emeishan basalts: Reappraisal of plume–lithosphere interaction processes. Lithos, 119(1-2), 91-107. https://doi.org/10.1016/j.lithos.2010.07.020
  18. Hellstrom, J.; Paton, C.; Woodhead, J.D.; Hergt, J.M. (2008). Iolite: software for spatially resolved LA-(Quad and MC)-ICP-MS analysis. Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues, 343-348.
  19. Kerr, A.C.; Marriner, G.F.; Tarney, J.; Nivia, A.; Saunders, A.D.; Thirlwall, M.F.; Sinton, C.W. (1997). Cretaceous basaltic terranes in Western Colombia: Elemental, chronological and Sr-Nd isotopic constraints on petrogenesis. Journal of Petrology, 38(6), 677-702. https://doi.org/10.1093/petroj/38.6.677
  20. Le Maitre, R.W.; Bateman, P.; Dubek, A.; Keller, J.; Lameyre, J.; Le Bas, M.; Sabine, P.; Schid, R.; Sorensen, H.; Streckeisen, A.; Woolley, A.; Zannettin, B. (1989). A classification of igneous rocks and glossary of terms. Editorial Blackwell.
  21. Lesage, G. (2011). Geochronology, Petrography, Geochemical Constraints, and Fluid Characterization of the Buriticá Gold Deposit, Antioquia Department, Colombia. MSc. Thesis, University of Alberta. https://doi.org/10.7939/R35M0M
  22. Ludwig, K. (2012). User’s Manual For Isoplot Version 3.75-4.15: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center, Spec. Publ. No. 5, 75.
  23. Maya, M.; González, H. (1995). Unidades litodémicas en la Cordillera Central de Colombia. Boletín Geológico, 35(2-3), 44-57. https://doi.org/10.32685/0120-1425/bolgeol35.2-3.1995.316
  24. Nelson, H.W. (1962). Contribución al conocimiento de la Cordillera Occidental. Sección carretera Cali-Buenaventura. Boletín Geológico 10(1-3), 81-108. https://doi.org/10.32685/0120-1425/bolgeol10.1-3.1962.235
  25. Nivia, A. (1996). The Bolivar mafic-ultramafic complex, SW Colombia: the base of an obducted oceanic plateau. Journal of South American Earth Sciences, 9(1-2), 59-68. https://doi.org/10.1016/0895-9811(96)00027-2
  26. Nivia, A. (2001). Mapa Geológico Departamento del Valle del Cauca. Escala 1:250.000. Memoria Explicativa. INGEOMINAS.
  27. Nivia, A.; Tarazona, C.; Paz, D. (2017). Geología y geocronología del batolito de Buga y el Macizo Ofiolítico de Ginebra, Colombia. Servicio Geológico Colombiano.
  28. Nivia, A.; Tarazona, C.; Paz, D.; Ríos, J. (2019). Patogénesis y edad de las rocas ultramáficas y máficas del Complejo ultramáfico de Venus, el Macizo Ofiolítico de Ginebra y su relación con el Batolito de Buga, Valle del Cauca. XVII Congreso Colombiano de Geología Bogotá.
  29. Pardo-Trujillo, A.; Cardona, A.; Giraldo, A.S.; León, S.; Vallejo, D.F.; Trejos-Tamayo, R.; Plata, A.; Ceballos, J.; Echeverri, S.; Barbosa-Espitia, A.; Slattery, J.; Salazar-Ríos, A.; Botello, G.E.; Celis, S.A.; Osorio-Granada, E.; Giraldo-Villegas, C.A. (2020). Sedimentary record of the Cretaceous–Paleocene arc–continent collision in the northwestern Colombian Andes: Insights from stratigraphic and provenance constraints. Sedimentary Geology, 401, 105627. https://doi.org/10.1016/j.sedgeo.2020.105627
  30. Parra, E. (1983). Geología de la Plancha 223 El Cairo. Escala 1:100.000 Memoria explicativa, INGEOMINAS.
  31. Paton, C.; Woodhead, J.D.; Hellstrom, J.C.; Hergt, J.M.; Greig, A.; Maas, R. (2010). Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems, 11(3). https://doi.org/10.1029/2009GC002618
  32. Paz, D.; Tarazona, A.; Nivia, A. (2017). Estructuras resultantes de la evolución reológica de magmas coetáneos y de composición contrastante en el Batolito de Buga, Colombia. XVI Congreso Colombiano de Geología, Santa Marta.
  33. Pearce, J.A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4), 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
  34. Peña-Urueña, M.L.; Muñoz-Rocha, J.A.; Urueña, C.L. (2018). Laboratorio de geocronología en el Servicio Geológico Colombiano: avances sobre datación U-Pb en circones mediante la técnica LA-ICP-MS. Boletín Geológico, 44, 39-56. https://doi.org/10.32685/0120-1425/boletingeo.44.2018.7
  35. Petrus, J.A.; Kamber, B.S. (2012). VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction. Geostandards and Geoanalytical Research, 36(3), 247-270. https://doi.org/10.1111/j.1751-908X.2012.00158.x
  36. Pindell, J.L. (1993). Regional synopsis of Gulf of Mexico and Caribbean evolution. In: J.L. Pindell, B.F. Perkins (eds.). Mesozoic and Early Cenozoic Development of the Gulf of Mexico and Caribbean Region: A Context for Hydrocarbon Exploration (pp. 251-274). SEPM Society for Sedimentary Geology. https://doi.org/10.5724/gcs.92.13.0251
  37. Renne, P.R.; Swisher, C.C.; Deino, A.L.; Karner, D.B.; Owens, T.L.; DePaolo, D.J. (1998). Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology, 145, 117-152. https://doi.org/10.1016/S0009-2541(97)00159-9
  38. Rodríguez, G.; Arango, M.I.; Bermúdez, J.G. (2012a). Batolito de Sabanalarga, plutonismo de arco en la zona de sutura entre las cortezas oceánica y continental de los Andes del norte. Boletín de Ciencias de la Tierra, 32, 81-98.
  39. Rodríguez, G.; González, H.; Restrepo, J.J.; Martens, U.; Cardona, J.D. (2012b). Ocurrence of granulites in the northern part of the western cordillera of Colombia. Boletín de Geología, 34(2), 37-53.
  40. Rodríguez, G.; Zapata, G. (2012). Características del plutonismo Mioceno superior en el segmento norte de la cordillera Occidental e implicaciones tectónicas en el modelo geológico del noroccidente colombiano. Boletín de Ciencias de la Tierra, 31, 5-22.
  41. Rodríguez, G.; Arango, M.I. (2013). Formación Barroso: Arco volcánico toleitico y Diabasas de San José de Urama: un prisma acrecionario T-Morb en el segmento norte de la cordillera Occidental de Colombia. Boletín de Ciencias de la Tierra, 33, 17-38.
  42. Rubatto, D. (2002). Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2), 123-138. https://doi.org/10.1016/S0009-2541(01)00355-2
  43. Ruprecht, P.; Simon, A.C.; Fiege, A. (2020). The survival of mafic magmatic enclaves and the timing of magma recharge. Geophysical Research Letters, 47(14), e2020GL087186. https://doi.org/10.1029/2020GL087186
  44. Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; Schaltegger, U., Schoene, B., Tubrett, M.N., Whitehouse, M.J. (2008). Plešovice zircon - A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2), 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005
  45. Stacey, J.S.; Kramers, J.D. (1975). Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2), 207-221. https://doi.org/10.1016/0012-821X(75)90088-6
  46. Streckeisen, A. (1976). To each plutonic rock its proper name. Earth-Science Reviews, 12(1), 1-33. https://doi.org/10.1016/0012-8252(76)90052-0
  47. Streckeisen, A. (1979). Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites, and melilitic rocks: Recommendations and suggestions of the IUGS Subcommission on the Systematics of Igneous Rocks. Geology, 7(7), 331-335. https://doi.org/10.1130/0091-7613(1979)7<331:CANOVR>2.0.CO;2
  48. Taboada, A.; Rivera, L.A.; Fuenzalida, A.; Cisternas, A.; Philip, H.; Bijwaard, H.; Olaya, J.; Rivera, C. (2000). Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19(5), 787-813. https://doi.org/10.1029/2000TC900004
  49. Toro-Toro, L.M.; Vallejo, F.; Salazar-Ríos, A.; Murcia, H.; Osorio-Ocampo, S.; García-Arias, M.; Arredondo, C. (2020). Granulitic rocks at the Western Cordillera of Colombia: Evidence of metamorphism in the Colombian Caribbean Oceanic Plateau. Journal of South American Earth Sciences, 101, 102632. https://doi.org/10.1016/j.jsames.2020.102632
  50. Vallejo, C.; Spikings, R.A.; Luzieux, L.; Winkler, W.; Chew, D.; Page, L. (2006). The early interaction between the Caribbean Plateau and the NW South American Plate. Terra Nova, 18(4), 264-269. https://doi.org/10.1111/j.1365-3121.2006.00688.x
  51. Villagómez, D. (2010). Thermochronology, geochronology and geochemistry of the Western and Central cordilleras and Sierra Nevada de Santa Marta, Colombia: The tectonic evolution of NW South America. PhD Thesis. Université De Genève. https://doi.org/10.13097/archive-ouverte/unige:14270
  52. Villagómez, D.; Spikings, R.; Magna, T.; Kammer, A.; Winkler, W.; Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3-4), 875-896. https://doi.org/10.1016/j.lithos.2011.05.003
  53. Villagómez, D.; Spikings, R. (2013). Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous-Tertiary evolution of the Northern Andes. Lithos, 160-161, 228-249. https://doi.org/10.1016/j.lithos.2012.12.008
  54. Weber, M.; Gómez-Tapias, J.; Cardona, A.; Duarte, E.; Pardo-Trujillo, A.; Valencia, V.A. (2015). Geochemistry of the Santa Fé Batholith and Buriticá Tonalite in NW Colombia - Evidence of subduction initiation beneath the Colombian Caribbean Plateau. Journal of South American Earth Sciences, 62, 257-274. https://doi.org/10.1016/j.jsames.2015.04.002
  55. Wiebe, R.A. (2016). Mafic replenishments into floored silicic magma chambers. American Mineralogist, 101(2), 297-310. https://doi.org/10.2138/am-2016-5429
  56. Wiedenbeck, M.; Allé, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; Von Quadt, A.; Roddick, J.C.; Spiegel, W. (1995). Three Natural Zircon Standards for U‐Th‐Pb, Lu‐Hf, Trace Element and Ree Analyses. Geostandards Newsletter, 19(1), 1-23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x
  57. Wiedenbeck, M.; Hanchar, J.M.; Peck, W.H.; Sylvester, P.; Valley, J.; Whitehouse, M.; Kronz, A.; Morishita, Y.; Nasdala, L.; Fiebig, J.; Franchi, I.; Girard, J.P.; Greenwood, R.C.; Hinton, R.; Kita, N.; Mason, P.R.D.; Norman, M.; Ogasawara, M.; Piccoli, P.M.; Rhede, D.; Satoh, H.; Schulz-Dobrick, B.; Skår, O.; Spicuzza, M.J.; Terada, K.; Tindle, A.; Togashi, S.; Vennemann, T.; Xie, Q.; Zheng, Y.F. (2004). Further characterisation of the 91500 zircon crystal. Geostandard, and Geoanalytical Research, 28(1), 9-39. https://doi.org/10.1111/j.1751-908X.2004.tb01041.x
  58. Zapata, G.; Rodríguez, G. (2011). Basalto de El Botón, arco volcánico mioceno de afinidad shoshonítica al norte de la cordillera Occidental de Colombia. Boletín de Ciencias de la Tierra, 30, 77-91.
  59. Zapata-García, G.; Rodríguez-García, G. (2020). New contributions to knowledge about the Chocó-Panamá Arc in Colombia, including a new segment south of Colombia. In: J. Gómez, D. Mateus-Zabala (eds.). The Geology of Colombia (pp. 417-450). Volume 3. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.37.2019.14
  60. Zapata-Villada, J.P.; Giraldo, W.; Rodríguez, G.; Geraldes, M.C.; Obando, M. (2021a). Geoquímica y geocronología U-Pb de la cuarzodiorita de Sabanalarga y el gabro de Santa Fe, Colombia. Boletín la Sociedad Geológica Mexicana, 73(1), A280520. https://doi.org/10.18268/bsgm2021v73n1a280520
  61. Zapata-Villada, J.P.; Cardona, A.; Serna, S.; Rodríguez, G. (2021b). Late Cretaceous to Paleocene magmatic record of the transition between collision and subduction in the Western and Central Cordillera of northern Colombia. Journal of South American Earth Sciences, 112(Part 1), 103557. https://doi.org/10.1016/j.jsames.2021.103557