Revista Integración, temas de matemáticas.
Vol. 28 Núm. 1 (2010): Revista Integración, temas de matemáticas
Artículos científicos

Sistemas estelares post-newtonianos axialmente simétricos

Camilo Akímushkin
Universidad Industrial de Santander
Javier Ramos Caro
Universidad Industrial de Santander
Guillermo A. González
Universidad Industrial de Santander

Publicado 2010-06-09

Palabras clave

  • Primer aproximación post-newtoniana,
  • dinámicas estelar ygaláctica

Cómo citar

Akímushkin, C., Ramos Caro, J., & González, G. A. (2010). Sistemas estelares post-newtonianos axialmente simétricos. Revista Integración, Temas De matemáticas, 28(1), 1–14. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/2056

Resumen

Presentamos un método para obtener modelos estelares discoidales,axialmente simétricos, auto-consistentes en la primera aproximaciónpost-Newtoniana (1PN). Usando en las ecuaciones de campo de la aproximación1PN una función de distribución conocida (DF) que correspondea un modelo Newtoniano, se obtienen dos ecuaciones fundamentales paradeterminar las correcciones 1PN. Las curvas de rotación de los modelos corregidosdifieren de las clásicas y las correcciones son claramente apreciablescon los valores de la masa y el radio de una galaxia típica. Por otro lado, lacorrección relativista de la masa se puede ignorar para todos los modelos.

 

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Binney J., and Tremaine S., “Galactic Dynamics”, 2nd Ed., Princeton University Press, Princeton, N. J., (2008).

[2] González G. A., and Reina J. I., An infinite family of generalized Kalnajs discs, MNRAS, 371 (2006), 1873.

[3] González G. A., and Letelier P. S., Relativistic static thin disks with radial stress support, Class. Quantum Grav., 16 (1999), 479.

[4] González G. A. and Letelier P. S., Rotating relativistic thin disks, Phys. Rev., D 62 (2000), 064025.

[5] Hunter C., MNRAS, The structure and stability of self-gravitating disks, 126 (1963), 299.

[6] Hunter C., and Toomre A., Dynamics of the Bending of the Galaxy, ApJ, 155 (1969), 747.

[7] Jiang Z., Flattened Jaffe models for galaxies, MNRAS, 319 (2000), 1067.

[8] Jiang Z., and Moss D., Prolate Jaffe models for galaxies, MNRAS, 331 (2002), 117.

[9] Jiang Z. and Ossipkov L., Two-integral distribution functions for axisymmetric systems, MNRAS, 379 (2007), 1133.

[10] Kalnajs A. J., The equilibria and oscillations of a family of uniformly rotating stellar disks, ApJ, 175 (1972), 63.

[11] Kalnajs A. J., Dynamics of Flat Galaxies. III. Equilibrium models, ApJ, 205 (1976), 751.

[12] Lemos J. P. S., and Letelier P. S., Superposition of Morgan and Morgan disks with a Schwarzschild black hole, Class. Quantum Grav., 10 (1993), L75.

[13] Lemos J. P. S., and Letelier P. S., Exact general relativistic thin disks around black holes, Phys. Rev., D 49 (1994), 5135.

[14] Lemos J. P. S., and Letelier P. S., Two Families of exact general disks with acentral black hole, Int. J. Modern Phys. D 5 (1996), 53.

[15] Lynden-Bell D., Stellar dynamics: Exact solution of the self-gravitation equation, MNRAS, 123 (1962), 447.

[16] Mestel L., On the galactic law of rotation, MNRAS, 126 (1963), 553.

[17] Pedraza J. F., Ramos-Caro J., and González G. A., An infinite family of selfconsistent models for axisymmetric flat galaxies, MNRAS, 390 (2008), 1587.

[18] Rezania V., and Sobouti Y., Liouville’s equation in post Newtonian approximation I. Static solution, Astron. Astrophys., 354 (2000), 1110.

[19] Semerák O., and Zácek M., Gravitating discs around a Schwarzschild black hole: I, Class. Quantum Grav., 17 (2000), 1613.

[20] Semerák O., Thin disc around a rotating black hole, but with support in-between,Class. Quantum Grav., 19 (2002), 3829.

[21] Toomre A., On the distribution of matter within highly flattened galaxies, ApJ, 138 (1963), 385.

[22] Toomre A., On the gravitational stability of a disk of stars, ApJ, 139 (1964), 1217.

[23] Zácek M., and Semerák O., Gravitating discs around a Schwarzschild black hole: II, Czech. J. Phys., 52 (2002), 19.