Revista Integración, temas de matemáticas.
Vol. 19 Núm. 1 (2001): Revista Integración, temas de matemáticas
Artículos científicos

Counter-rotating relativistic static thin disks

Omar A. Espitia
Biografía
Guillermo A. González
Biografía

Cómo citar

Espitia, O. A., & González, G. A. (2001). Counter-rotating relativistic static thin disks. Revista Integración, Temas De matemáticas, 19(1), 1–12. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/740

Resumen

A detailed study of the Counter-Rotating Model (CRM) for generic fi-nite static axially symmetric thin disks with nonzero radial pressure is presented. We find a general constraint over the counter-rotating tan-gential velocities needed to cast the surface energy-momentum tensor of the disk as the superposition of two counter-rotating perfect fluids. We also found expressions for the energy density and pressure of the counter-rotating fluids. Then we shown that, in general, it is not possible to take the two counter-rotating fluids as circulating along geodesics neither take the two counter-rotating tangential velocities as equal and opposite. An specific example is studied where we obtain some CRM with well defined counter-rotating tangential velocities that are agree with the strong en­ergy condition, but there are regions of the disk with negative energy density, in violation of the weak energy condition.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

1] W. A. Bonnor and A. Sackfield, Comm. Math. Phys. 8, 338 (1968).

[2] T. Morgan and L. Morgan, Phys. Rev. 183, 1097 (1969).

[3] L. Morgan and T. Morgan, Phys. Rev. D2, 2756 (1970).

[4] A. Chamorro, R. Gregory and J. M. Stewart, Proc. R. Soc. Lond. A 413, 251(1987).

[5] G. A. Gonz ́alez and P. S. Letelier. Class. Quantum. Grav. 16, 479 (1999).

[6] P. S. Letelier. Phys. Rev. D 60, 104042 (1999).

[7] J. Katz, J. Bi ̆c ́ak and D. Lynden-Bell, Class. Quantum Grav. 16, 4023 (1999).[8] D. Lynden-Bell and S. Pineault, Mon. Not. R. Astron. Soc. 185, 679 (1978).

[9] P.S. Letelier and S. R. Oliveira, J. Math. Phys. 28, 165 (1987).[10] J. P. S. Lemos, Class. Quantum Grav. 6, 1219 (1989).

[11] J. P. S. Lemos and P. S. Letelier, Class. Quantum Grav. 10, L75 (1993).

[12] J. Bi ̆c ́ak, D. Lynden-Bell and J. Katz, Phys. Rev. D47, 4334 (1993).

[13] J. Bi ̆c ́ak, D. Lynden-Bell and C. Pichon, Mon. Not. R. Astron. Soc. 265, 126(1993).[14] J. Bi ̆c ́ak and T. Ledvinka. Phys. Rev. Lett. 71, 1669 (1993).

[15] J. P. S. Lemos and P. S. Letelier, Phys. Rev D49, 5135 (1994).[16] J. P. S. Lemos and P. S. Letelier, Int. J. Mod. Phys. D5, 53 (1996).[17] C. Klein, Class. Quantum Grav. 14, 2267 (1997).

[18] G. A. Gonz ́alez and P. S. Letelier. Phys. Rev. D 62, 064025 (2000).[19] V. C. Rubin, J. A. Graham and J. D. P Kenney. Ap. J. 394, L9-L12, (1992).[20] H. Rix, M. Franx, D. Fisher and G. Illingworth. Ap. J. 400, L5-L8, (1992).

[21] H. Weyl. Ann. Phys. 54, 117 (1917).

[22] H. Weyl. Ann. Phys. 59, 185 (1919).

[23] P. S. Letelier. Phys. Rev. D 22, 807 (1980).

[24] S. Chandrasekar,The Mathematical Theory of Black Holes. (Oxford UniversityPress, 1992).

[25] H. P. Robertson and T. W. Noonan.Relativity and Cosmology. (Saunders,1969).[26] S. W. Hawking and G. F. R. Ellis.The Large Scale Structure of Space-Time.Cambridge University Press, Cambridge (1973).