Resolución de problemas por medio de matemática experimental: uso de software de geometría dinámica para la construcción de un lugar geométrico desconocido

  • Martín E. Acosta Universidad Industrial de Santander
  • Carolina Mejía Universidad Industrial de Santander
  • Carlos W. Rodriguéz Universidad Industrial de Santander

Resumen

A través de un ejemplo de geometría euclidiana y utilizando el programa de geometría dinámica Cabri Géomètre, mostraremos cómo seguir un proceso para la solución de problemas mediante la matemática experimental que comprende dos momentos: la experimentación y la formalización. El problema que resolvemos es el siguiente: Dado un triángulo cualquiera, encontrar el lugar geométrico de todos los puntos en el plano tales que el triángulo simétrico lateral del triángulo dado sea rectángulo.

Palabras clave: experimentación matemática, geometría dinámica, lugar geométrico

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor

Martín E. Acosta, Universidad Industrial de Santander
Escuela de matemáticas, Universidad Industrial de Santander, Bucaramanga, Colombia
Carolina Mejía, Universidad Industrial de Santander
Escuela de matemáticas, Universidad Industrial de Santander, Bucaramanga, Colombia
Carlos W. Rodriguéz, Universidad Industrial de Santander
Escuela de matemáticas, Universidad Industrial de Santander, Bucaramanga, Colombia

Citas

[1] Acosta M., “Geometría experimental con Cabri: una nueva praxeología matemática”, Educación Matemática 17, núm. 3 (2005).

[2] Borwein J. et al. Experimentation in mathematics, computational paths to discovery. A. K. Peters. USA, 2004.

[3] Baccaglini-Frank A., and Mariotti M.A., “Conjecturing and Proving in Dynamic Geometry: the Elaboration of Some Research Hypotheses”, In Proceedings of the 6th Conference on European Research in Mathematics Education, Lyon, January 2009.

[4] Hanna G., Proof, explanation and exploration: An overview. Educational Studies in Mathematics, Special issue on “Proof in Dynamic Geometry Environments”, 44 (1-2), 5-23, 2000.

[5] Kuntz G., Démarche expérimentale et apprentissages mathématiques. Dossiers de la VST, en ligne http://www.inrp.fr/vst/Dossiers/Demarche_experimentale/sommaire.htm

[6] Ministerio de Educación Nacional. Lineamientos Curriculares: Matemáticas, Bogotá, Magisterio, 1998.

[7] Moise E., and Downs F. Jr., Geometría Moderna. Fondo Educativo Interamericano, S.A. Massachusetts, 1964.

[8] Yerushalmy M., Chazan D. & Gordon M., Guided inquiry and technology: A yearlong study of children and teachers using the Geometric Supposer. (Technical Report No. 90-8). Newton, MA: Education Development Center, 1988
Publicado
2011-11-23