Revista Integración, temas de matemáticas.
Vol. 29 No. 2 (2011): Revista Integración, temas de matemáticas
Research and Innovation Articles

Solving geometric problems through experimental mathematics: use of dynamic geometric software to construct on unknown locus

Martín E. Acosta
Universidad Industrial de Santander
Bio
Carolina Mejía
Universidad Industrial de Santander
Bio
Carlos W. Rodriguéz
Universidad Industrial de Santander
Bio

Published 2011-11-23

Keywords

  • experimental mathematics,
  • dynamic geometry,
  • locus

How to Cite

Acosta, M. E., Mejía, C., & Rodriguéz, C. W. (2011). Solving geometric problems through experimental mathematics: use of dynamic geometric software to construct on unknown locus. Revista Integración, Temas De matemáticas, 29(2), 163–174. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/2557

Abstract

Through an example of Euclidean geometry and using the dynamic geometry software Cabri Géomètre, we show here how to follow a process to solve problems via experimental mathematics which include two phases: experimentation and formalization. The problem we solve is as follows: Given a triangle, find the locus for all points in the plane such that the lateral symmetrical triangle to triangle given be rectangle.

Downloads

Download data is not yet available.

References

[1] Acosta M., “Geometría experimental con Cabri: una nueva praxeología matemática”, Educación Matemática 17, núm. 3 (2005).

[2] Borwein J. et al. Experimentation in mathematics, computational paths to discovery. A. K. Peters. USA, 2004.

[3] Baccaglini-Frank A., and Mariotti M.A., “Conjecturing and Proving in Dynamic Geometry: the Elaboration of Some Research Hypotheses”, In Proceedings of the 6th Conference on European Research in Mathematics Education, Lyon, January 2009.

[4] Hanna G., Proof, explanation and exploration: An overview. Educational Studies in Mathematics, Special issue on “Proof in Dynamic Geometry Environments”, 44 (1-2), 5-23, 2000.

[5] Kuntz G., Démarche expérimentale et apprentissages mathématiques. Dossiers de la VST, en ligne http://www.inrp.fr/vst/Dossiers/Demarche_experimentale/sommaire.htm

[6] Ministerio de Educación Nacional. Lineamientos Curriculares: Matemáticas, Bogotá, Magisterio, 1998.

[7] Moise E., and Downs F. Jr., Geometría Moderna. Fondo Educativo Interamericano, S.A. Massachusetts, 1964.

[8] Yerushalmy M., Chazan D. & Gordon M., Guided inquiry and technology: A yearlong study of children and teachers using the Geometric Supposer. (Technical Report No. 90-8). Newton, MA: Education Development Center, 1988