Revista Integración, temas de matemáticas.
Vol. 19 Núm. 1 (2001): Revista Integración, temas de matemáticas
Artículos científicos

Construcáo de solucóes solitónicas das equacóes de Einstein

Guillermo A. González
Biografía

Cómo citar

González, G. A. (2001). Construcáo de solucóes solitónicas das equacóes de Einstein. Revista Integración, Temas De matemáticas, 19(1), 23–36. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/742

Resumen

Se faz o estudo do Método do Espalhamento Inverso para a construcáo de solucóes das equacóes de Einstein no vazio. A construcáo de solucóes para o caso no qual a solugáo particular é urna métrica diagonal é apresentada brevemente. Finalmente, expressoes explícitas para solucóes com dois sólitons sao apresentadas.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Kramer, D., Stephani, H., Herlt, E. and McCallum, M.Exact Solutions ofEinstein’s Field Equations. (Cambridge University Press, 1980).

[2] Belinsky, V. A. and Zakharov, V. E. “Integration of the Einstein Equations bymeans of the Inverse Scattering Technique and Construction of Exact SolitonSolutions”.Zh. Eksp. Teor. Fis.75, 1955 (1978). [Sov. Phys. JETP48, 985(1978).]

[3] Belinsky, V. A. and Zakharov, V. E. “Stationary Gravitational Solitons withAxial Symmetry”.Zh. Eksp. Teor. Fis.77, 3 (1979). [Sov. Phys. JETP50,1 (1979).]

[4] Chaudhuri, S. and Das, K. C.Two-soliton Solutions of Axially SymmetricMetrics. Gen. Rel. Grav. 29, 75 (1997).[5] Letelier, P. S. “Cylindrically Symmetric Solitary Wave Solutions to the Ein-stein Equations”.J. Math. Phys.25, 2675 (1984).

[6] Letelier, P. S. “Static and Stationary Multiple Soliton Solutions to the EinsteinEquations”.J. Math. Phys.26, 467 (1985).

[7] Letelier, P. S. “Soliton Solutions to the Vacuum Einstein Equations Obtainedfrom a Nondiagonal Seed Solution”.J. Math. Phys.27, 564 (1986).

[8] Letelier, P. S.On Soliton Solutions to the Vacuum Einstein Equations Obtainedfrom a General Seed Solution. Class. Quantum Grav. 6, 875 (1989).

[9] Letelier, P. S. and Oliveira, S. R. “Exact Selfgraviting Disks and Rings: aSolitonic Approach”.J. Math. Phys.28, 165 (1987).

[10] McCrea, J. D. “Static Axially Symmetric Gravitational Fields with Shell Sources”.J. Phys.A9, 697 (1976).

[11] Weyl, H.Zur Gravitationstheorie. Ann. Physik 54, 117 (1917).

[12] Weyl, H.Bemerkung ̈Uber die Axialsymmetrischen L ̈osungen der Einstein-schen Gravitationsgleichungen. Ann. Physik 59, 185 (1919).

[13] Zipoy, D. M. “Topology of Some Spheroidal Metrics”.J. Math. Phys. 7, 1137(1966).

[14] Voorhees, B. H. “Static Axially Symmetric Gravitational Fields”.Phys. Rev.D2, 2119 (1970).

[15] Bonnor, W. B. and Sackfield, A. “The Interpretation of Some Spheroidal Met-rics”.Comm. Math. Phys.8, 338 (1968).

[16] Chazy, J. “Sur le Champ de Gravitation de Deux Masses Fixes dans la Th ́eoriede la Relativit ́e”.Bull. Soc. Math. France.52, 17 (1924).

[17] Curzon, H. E. J. “Cylindrical Solutions of Einstein’s Gravitation Equations”.Proc. London Math. Soc.23, 477 (1924).

[18] Demia ́nski, M. and Newmann, E. T. “A Combined Kerr-NUT Solution of theEinstein Field Equations”.Bull. Acad. Polon. Sci. Ser. Math. Astron. Phys.14, 653 (1966).

[19] Newmann, E., Tamburino, L. and Unti, T. “Empty-Space Generalization ofthe Schwarzschild Metric”.J. Math. Phys.4, 915 (1963).