Revista Integración, temas de matemáticas.
Vol. 36 Núm. 2 (2018): Revista Integración, temas de matemáticas
Artículos científicos

Análisis multilineal para operadores pseudodiferenciales periódicos y discretos en espacios Lp

Duván Cardona
Pontificia Universidad Javeriana, Departmento de Matemáticas, Bogotá, Colombia.
Vishvesh Kumar
Indian Institute of Technology Delhi, Department of Mathematics, New Delhi-110016, India.

Publicado 2018-12-12

Palabras clave

  • Operador pseudo-diferencial,
  • operador discreto,
  • operador periódico,
  • nuclearidad,
  • continuidad,
  • operador integral de Fourier,
  • Análisis multilineal
  • ...Más
    Menos

Cómo citar

Cardona, D., & Kumar, V. (2018). Análisis multilineal para operadores pseudodiferenciales periódicos y discretos en espacios Lp. Revista Integración, Temas De matemáticas, 36(2), 151–164. https://doi.org/10.18273/revint.v36n2-2018006

Resumen

En esta nota anunciamos los resultados de nuestra investigación sobre las propiedades Lp de operadores pseudodiferenciales multilineales periódicos y/o discretos. Primero, revisaremos el análisis multilineal de tales operadores mostrando versiones análogas de los teoremas clásicos disponibles en el análisis multilineal euclidiano (debidos a Coifman y Meyer, Tomita, Miyachi, Fujita, Grafakos, Tao, etc.), pero, en el contexto de operadores periódicos y/o discretos. Se caracterizará la s-nuclearidad, 0 < s ≤ 1, para operadores multilineales pseudodiferenciales periódicos y/o discretos. Para cumplir este objetivo se clasificarán aquellos operadores lineales s-nucleares, 0 < s ≤ 1, multilineales con núcleo, sobre espacios de Lebesgue arbitrarios definidos en espacios de medida σ-finitos. Finalmente, como aplicación de los resultados presentados se obtiene la versión periódica de la desigualdad de Kato-Ponce, y se examina la s-nuclearidad de potenciales de Bessel lineales y multilineales, como también la s-nuclearidad de operadores integrales de Fourier periódicos admitiendo símbolos con tipos adecuados de singularidad.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Agranovich M.S., “Spectral properties of elliptic pseudo-differential operators on a closed curve”, Funct. Anal. Appl. 13 (1971), 279–281.

[2] Aoki S., “On the boundedness and the nuclearity of pseudo-differential operators”, Comm. Partial Diff. Equations 6 (1981), No. 8, 849–881.

[3] Bényi A., Bernicot F., Maldonado D., Naibo V. and Torres R., “On the Hörmander classes of bilinear pseudo-differential operators II”, Indiana Univ. Math. J. 62 (2013), 1733–1764.

[4] Bényi A., Maldonado D., Naibo V. and Torres R., “On the Hörmander classes of bilinear pseudodifferential operators”, Integral Equ. Oper. Theory 67 (2010), 341–364.

[5] Botchway L., Kibiti G. and Ruzhansky M., “Difference equations and pseudo-differential operators on Zn”, arXiv:1705.07564.

[6] Cardona D. “Estimativos L2 para una clase de operadores pseudodiferenciales definidos en el toro”, Rev. Integr. Temas Mat. 31 (2013), No. 2, 142–157.

[7] Cardona D., “Weak type (1, 1) bounds for a class of periodic pseudo-differential operators”, J. Pseudo-Differ. Oper. Appl. 5 (2014), No. 4, 507–515.

[8] Cardona D., “On the boundedness of periodic pseudo-differential operators”, Monatsh. Math. 185 (2017), No. 2, 189–206.

[9] Cardona D., “Pseudo-differential operators on Zn with applications to discrete fractional integral operators”, arXiv:1803.00231.

[10] Cardona D. and Kumar V., “Lp-boundedness and Lp-nuclearity of multilinear pseudodifferential operators on Zn and the torus T n”, arXiv:1809.08380.

[11] Cardona D., Messiouene R. and Senoussaoui A., “Lp-bounds for periodic Fourier integral operators (Fourier series operators)”, arXiv:1807.09892.

[12] Catana V., “Lp-boundedness of Multilinear Pseudo-differential Operators on Zn and Tn”, Math. Model. Nat. Phenom. 9 (2014), No. 5, 17–38.

[13] Coifman R. and Meyer Y., “On commutators of singular integrals and bilinear singular integrals”, Trans. Amer. Math. Soc. 212 (1975), 315–331.

[14] Coifman R. and Meyer Y., Ondelettes et operateurs III. Operateurs multilineaires, Hermann, Paris, (1991).

[15] Delgado J., “Lp bounds for pseudo-differential operators on the torus”, Oper. Theory Adv. Appl. 231 (2012), 103–116.

[16] Delgado J., “A trace formula for nuclear operators on Lp”, Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations, Operator Theory: Advances and Applications, in: Schulze, B.W., Wong, M.W. (eds.) 205, Birkhäuser, Basel (2010), 181–193.

[17] Delgado J. and Wong M.W., “Lp-nuclear pseudo-differential operators on Z and S1”, Proc. Amer. Math. Soc. 141 (2013), No. 11, 3935–3944.

[18] Delgado J., “The trace of nuclear operators on Lp(μ) for -finite Borel measures on second countable spaces”, Integr. Equ. Oper. Theory 68 (2010), No. 1, 61–74.

[19] Fujita M. and Tomita N., “Weighted norm inequalities for multilinear Fourier multipliers”, Trans. Amer. Math. Soc. 364 (2012), No. 12, 6335–6353.

[20] Ghaemi M. B., Jamalpour Birgani M. and Wong M.W., “Characterizations of nuclear pseudo-differential operators on S1 with applications to adjoints and products”, J. Pseudo-Differ. Oper. Appl. 8 (2017), No. 2, 191–201.

[21] Grafakos L., Miyachi A. and Tomita N., “On multilinear Fourier multipliers of limited smoothness”, Canad. J. Math. 65 (2013), 299–330.

[22] Grafakos L. and Si Z., “The Hörmander multiplier theorem for multilinear operators”, J. Reine Angew. Math. 668 (2012), 133–147.

[23] Grafakos L. and Torres R., “Discrete decompositions for bilinear operators and almost diagonal conditions”, Trans. Amer. Math. Soc. 354 (2012), 1153–1176.

[24] Grafakos L. and Torres R., “Multilinear Calderón-Zygmund theory”, Adv. Math. 165 (2002), 124–164.

[25] Hörmander L., The Analysis of the linear partial differential operators Vol. III, IV Springer-Verlag, (1985).

[26] Jamalpour Birgani M., “Characterizations of Nuclear Pseudo-differential Operators on Z with some Applications”, Math. Model. Nat. Phenom. 13 (2018), 13–30.

[27] Kenig C. and Stein E., “Multilinear estimates and fractional integration”, Math. Res. Lett. 6 (1999), 1–15.

[28] Kumar V., “Pseudo-differential operators on homegeneous spaces of Compact and Hausdorff groups”, to appear in Forum Mathematicum, (2018).

[29] Mclean W.M., “Local and Global description of periodic pseudo-differential operators”, Math. Nachr. 150 (191), 151–161.

[30] Michalowski N., Rule D. and Staubach W., “Multilinear pseudodifferential operators beyond Calderón-Zygmund operators”, J. Math. Anal. Appl. 414 (2014), 149–165.

[31] Miyachi A. and Tomita N., “Minimal smoothness conditions for bilinear Fourier multipliers”, Rev. Mat. Iberoam. 29 (2013), 495–530.

[32] Miyachi A. and Tomita N. “Calderón-Vaillancourt type theorem for bilinear operators”, Indiana Univ. Math. J. 62 (2013), 1165–1201.

[33] Miyachi A. and Tomita N. “Bilinear pseudo-differential operators with exotic symbols”, to appear in Ann. Inst. Fourier (Grenoble), arXiv:180106744.

[34] Molahajloo S., “A characterization of compact pseudo-differential operators on S1”, Oper. Theory Adv. Appl. 213 (2011), 25–29.

[35] Molahajloo S. and Wong M.W., “Pseudo-differential Operators on S1”, New developments in pseudo-differential operators, Eds. L. Rodino and M.W. Wong. 297–306 (2008).

[36] Molahajloo S. and Wong M.W., “Ellipticity, Fredholmness and spectral invariance of pseudo-differential operators on S1” J. Pseudo-Differ. Oper. Appl. 1 (2010), No. 2, 183–205.

[37] Muscalu C., Tao T. and Thiele C., “Multilinear operators given by singular multipliers”, J. Amer. Math. Soc. 15 (2002), 469–496.

[38] Rabinovich V.S., “Exponential estimates of solutions of pseudo-differential equations on the lattice (μZ)n, applications to the lattice Schrödinger and Dirac operators”, J. Pseudo-Differ. Oper. Appl. 1 (2010), No. 2, 233–253.

[39] Rabinovich V.S., “Wiener algebra of operators on the lattice (μZ)n depending on the small parameter μ > 0”, Complex Var. Elliptic Equ. 58 (2013), No. 6, 751–766.

[40] Rabinovich V.S. and Roch S., “The essential spectrum of Schrödinger operators on lattices”, J. Phys. A. 39 (2006), No. 26, 8377–8394.

[41] Rabinovich V.S. and Roch S., “Essential spectra and exponential estimates of eigenfunctions of lattice operators of quantum mechanics”, J. Phys. A. 42 (2009), No. 38, 385207.

[42] Rempala J.A., “On a proof of the boundedness and nuclearity of pseudodifferential operators in Rn”, Annales Polonici Mathematici 52 (1990), 59–65.

[43] Rodriguez C.A., “Lp−estimates for pseudo-differential operators on Zn”, J. Pseudo-Differ. Oper. Appl. 2 (2011), 367–365.

[44] Ruzhansky M. and Turunen V., “Quantization of Pseudo-Differential Operators on the Torus”, J. Fourier Anal. Appl. 16 (2010), 943–982.

[45] Ruzhansky M. and Turunen V., Pseudo-differential Operators and Symmetries: Background Analysis and Advanced Topics, Birkhaüser-Verlag, Basel, (2010).

[46] Tomita N., “A Hörmander type multiplier theorem for multilinear operators”, J. Funct. Anal. 259 (2010), 2028–2044.

[47] Turunen V. and Vainikko G., “On symbol analysis of periodic pseudodifferential operators, Z. Anal. Anwendungen 17 (1998), 9–22.

[48] Stein E. and Weiss G., Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J. (1971).