Revista Integración, temas de matemáticas.
Vol. 33 Núm. 1 (2015): Revista Integración, temas de matemáticas
Artículos científicos

Cotas del tipo débil (1,1) para una clase de operadores con núcleo discreto

Duván Cardona
Universidad del Valle

Publicado 2015-05-21

Palabras clave

  • Espacios Lp,
  • operador discreto,
  • operador pseudo diferencial,
  • descomposición de Calderón-Zygmund

Cómo citar

Cardona, D. (2015). Cotas del tipo débil (1,1) para una clase de operadores con núcleo discreto. Revista Integración, Temas De matemáticas, 33(1), 51–60. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4769

Resumen

En este trabajo se investigará el tipo débil (1,1) de una cierta clase de operadores con núcleo definido sobre Z×Z. Se estudiará la continuidad débil de operadores que son análogos discretos de los ahora conocidos, operadores singulares integrales de Calderón-Zygmund. Los operadores considerados surgen desde el estudio de operadores pseudo diferenciales de tipo discreto y versiones discretas de integrales singulares.

Para citar este artículo: D. Cardona, Weak-type (1,1) bounds for a class of operators with discrete kernel, Rev. Integr. Temas Mat. 33 (2015), no. 1, 51-60.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Bober J., Carneiro E., Hughes K. and Pierce L., “On a discrete version of Tanaka’s theorem for maximal functions”, Proc. Amer. Math. Soc. 140 (2012), no. 5, 1669-1680.
  2. Calderón A.P. and Zygmund A., “On the existence of certain singular integrals”, Acta Math. 88 (1952), 85-139.
  3. Cardona D., “Invertibilidad de operadores pseudo diferenciales definidos en Zn”, Lect. Mat. 34 (2013), no. 2, 179-186.
  4. Carneiro E. and Hughes K., “On the endpoint regularity of discrete maximal operators”, Math. Res. Lett. 19 (2012), no. 6, 1245-1262.
  5. Carro M., “Discretization of linear operators on Lp(Rn)”, Illinois J. Math. 42 (1998), no. 1, 1-18.
  6. Duoandikoetxea J., Fourier Analysis, American Mathematical Society, Providence, RI, 2001.
  7. Grafakos L., “An elementary proof of the square summability of the discrete Hilbert transform”, Amer. Math. Monthly. 101 (1994), no. 5, 456-458.
  8. Hughes K.J. Jr., “Arithmetic analogues in harmonic analysis: Results related to Waring’s problem”, Thesis (Ph.D.), Princeton University, 2012, 112 p.
  9. Kikuchi N., Nakai E., Tomita N., Yabuta K. and Yoneda T., “Calderón-Zygmund operators on amalgam spaces and in the discrete case”, J. Math. Anal. Appl. 335 (2007), no. 1, 198-
  10. Marcinkiewicz J., “Sur l’interpolation d’operations”, C. R. Acad. Sci. Paris. 208 (1939),1272-1273.
  11. Mirek M., “Weak type (1,1) inequalities for discrete rough maximal functions”, arXiv:1305.0575v2 (2014).
  12. Molahajloo S., “Pseudo-differential operators on Z : Pseudo-differential operators: complex analysis and partial differential equations”, Oper. Theory. Adv. Appl. 205 (2010), 213-221.
  13. Pierce L., “Discrete analogues in harmonic analysis”, Thesis (Ph.D), Princeton University, 2009, 321 p.
  14. Riesz M., “Sur les fonctions conjuguées”, Math. Z. 27 (1928), no.1, 218-244.
  15. Rodriguez C.A., “Lp−estimates for pseudo-differential operators on Zn”, J. Pseudo-Differ. Oper. Appl. 1 (2011), 183-205.
  16. Stein E., Harmonic Analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, 1993.
  17. Stein E. and Wainger S., “Discrete analogues of singular Radon transforms”, Bull. Amer. Math. Soc. (N.S.). 23 (1990), no. 2, 537-544.
  18. Stein E. and Wainger S., “Discrete analogues in harmonic analysis. I. l 2 estimates for singular Radon transforms”, Amer. J. Math. 121 (1999), no. 6, 1291-1336.
  19. Stein E. and Wainger S., “Discrete analogues in harmonic analysis, II. Fractional integration”, J. Anal. Math. 80 (2000), 335-355.
  20. Urban R. and Zienkiewicz J., “Weak type (1,1) estimates for a class of discrete rough maximal functions”, Math. Res. Lett. 14 (2007), no. 2, 227-237.
  21. Wong M.W., Discrete Fourier Analysis. Birkhäuser/
  22. Springer Basel AG, Basel, 2011.
  23. Zygmund A., “On a theorem of Marcinkiewicz concerning interpolation of operations”, J. Math. Pures. Appl. 35 (1956), no. 9, 223-248.