Revista Integración, temas de matemáticas.
Vol. 33 No. 1 (2015): Revista Integración, temas de matemáticas
Research and Innovation Articles

Weak-type (1,1) bounds for a class of operators with discrete kernel

Duván Cardona
Universidad del Valle

Published 2015-05-21

Keywords

  • Lp spaces,
  • discrete operator,
  • pseudo-differential operator,
  • Calderón-Zygmund decomposition

How to Cite

Cardona, D. (2015). Weak-type (1,1) bounds for a class of operators with discrete kernel. Revista Integración, Temas De matemáticas, 33(1), 51–60. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4769

Abstract

In this paper we investigate the weak continuity of a certain class of operators with kernel defined on Z×Z. We prove some results on the weak boundedness of discrete analogues of Calderón Zygmund operators. The considered operators arise from the study of discrete pseudo-differential operators and discrete analogues of singular integral operators.

To cite this article: D. Cardona, Weak-type (1,1) bounds for a class of operators with discrete kernel, Rev. Integr. Temas Mat. 33 (2015), no. 1, 51-60.

Downloads

Download data is not yet available.

References

  1. Bober J., Carneiro E., Hughes K. and Pierce L., “On a discrete version of Tanaka’s theorem for maximal functions”, Proc. Amer. Math. Soc. 140 (2012), no. 5, 1669-1680.
  2. Calderón A.P. and Zygmund A., “On the existence of certain singular integrals”, Acta Math. 88 (1952), 85-139.
  3. Cardona D., “Invertibilidad de operadores pseudo diferenciales definidos en Zn”, Lect. Mat. 34 (2013), no. 2, 179-186.
  4. Carneiro E. and Hughes K., “On the endpoint regularity of discrete maximal operators”, Math. Res. Lett. 19 (2012), no. 6, 1245-1262.
  5. Carro M., “Discretization of linear operators on Lp(Rn)”, Illinois J. Math. 42 (1998), no. 1, 1-18.
  6. Duoandikoetxea J., Fourier Analysis, American Mathematical Society, Providence, RI, 2001.
  7. Grafakos L., “An elementary proof of the square summability of the discrete Hilbert transform”, Amer. Math. Monthly. 101 (1994), no. 5, 456-458.
  8. Hughes K.J. Jr., “Arithmetic analogues in harmonic analysis: Results related to Waring’s problem”, Thesis (Ph.D.), Princeton University, 2012, 112 p.
  9. Kikuchi N., Nakai E., Tomita N., Yabuta K. and Yoneda T., “Calderón-Zygmund operators on amalgam spaces and in the discrete case”, J. Math. Anal. Appl. 335 (2007), no. 1, 198-
  10. Marcinkiewicz J., “Sur l’interpolation d’operations”, C. R. Acad. Sci. Paris. 208 (1939),1272-1273.
  11. Mirek M., “Weak type (1,1) inequalities for discrete rough maximal functions”, arXiv:1305.0575v2 (2014).
  12. Molahajloo S., “Pseudo-differential operators on Z : Pseudo-differential operators: complex analysis and partial differential equations”, Oper. Theory. Adv. Appl. 205 (2010), 213-221.
  13. Pierce L., “Discrete analogues in harmonic analysis”, Thesis (Ph.D), Princeton University, 2009, 321 p.
  14. Riesz M., “Sur les fonctions conjuguées”, Math. Z. 27 (1928), no.1, 218-244.
  15. Rodriguez C.A., “Lp−estimates for pseudo-differential operators on Zn”, J. Pseudo-Differ. Oper. Appl. 1 (2011), 183-205.
  16. Stein E., Harmonic Analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, 1993.
  17. Stein E. and Wainger S., “Discrete analogues of singular Radon transforms”, Bull. Amer. Math. Soc. (N.S.). 23 (1990), no. 2, 537-544.
  18. Stein E. and Wainger S., “Discrete analogues in harmonic analysis. I. l 2 estimates for singular Radon transforms”, Amer. J. Math. 121 (1999), no. 6, 1291-1336.
  19. Stein E. and Wainger S., “Discrete analogues in harmonic analysis, II. Fractional integration”, J. Anal. Math. 80 (2000), 335-355.
  20. Urban R. and Zienkiewicz J., “Weak type (1,1) estimates for a class of discrete rough maximal functions”, Math. Res. Lett. 14 (2007), no. 2, 227-237.
  21. Wong M.W., Discrete Fourier Analysis. Birkhäuser/
  22. Springer Basel AG, Basel, 2011.
  23. Zygmund A., “On a theorem of Marcinkiewicz concerning interpolation of operations”, J. Math. Pures. Appl. 35 (1956), no. 9, 223-248.