Revista Integración, temas de matemáticas.
Vol. 37 Núm. 1 (2019): Revista Integración, temas de matemáticas
Artículos científicos

La propiedad de Kelley y continuos

Sergio Macías
Universidad Nacional Autónoma de México, Instituto de Matemáticas, México D.F., México.

Publicado 2019-02-19

Palabras clave

  • Continuo de Effros,
  • continuo homogéneo,
  • función atómica,
  • función T,
  • propiedad uniforme de Effros,
  • propiedad de Kelley
  • ...Más
    Menos

Cómo citar

Macías, S. (2019). La propiedad de Kelley y continuos. Revista Integración, Temas De matemáticas, 37(1), 17–29. https://doi.org/10.18273/revint.v37n1-2019002

Resumen

Estudiamos a los continuos de Hausdorff con la propiedad de Kelley. Presentamos la versión para continuos de Hausdorff de varios resultados conocidos en el caso métrico. Establecemos una versión débil de Hausdorff del Teorema de Descomposición Aposindética de Jones.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Bellamy D.P. and Lum L., “The Cyclic Connectivity of Homogeneous Arcwise Connected Continua”, Trans. Amer. Math. Soc. 266 (1981), 389–396.

[2] Camargo J., Macías S. and Uzcátegui C., “On the images of Jones’ set function T ”, Colloq. Math. 153 (2018), 1–19.

[3] Charatonik W.J., “A homogeneous continuum without the property of Kelley”, Topology Appl. 96 (1999), 209–216.

[4] Christenson C. and Voxman W., Aspects of Topology, Monographs and Textbooks in Pure and Applied Math., Vol. 39, Marcel Dekker, New York, Basel, 1977.

[5] Engelking R., General Topology, Sigma series in pure mathematics, Vol. 6, Heldermann, Berlin, 1989.

[6] Hocking J. and Young G., Topology, Dover, 1988.

[7] Kelley J.L., “Hyprespaces of a continuum”, Trans. Amer. Math. Soc. 52 (1942), 22–36.

[8] Macías S., Topics on Continua, 2nd edition, Springer, 2018.

[9] Macías S., “A Decomposition Theorem for a Class of Continua for Which the Set Function T is Continuous”, Colloq. Math. 109 (2007), 163–170.

[10] Macías S., “On the Idempotency of the Set Function T ”, Houston J. Math. 37 (2011), 1297–1305.

[11] Macías S., “On Jones’ set function T and the property of Kelley for Hausdorff continua”, Topology Appl. 226 (2017), 51–65.

[12] Macías S., “Hausdorff continua and the uniform property of Effros”, Topology Appl. 230 (2017), 338–352.

[13] Macías S. and Nadler Jr. S.B., “Various types of local connectedness in n-fold hyperspaces”, Topology Appl. 154 (2007), 39–53.

[14] Makuchowski W., “On local connectedness in hyperspaces”, Bull. Pol. Acad. Sci. 47 (1999), 119–126.

[15] Michael E., “Topologies on spaces of subsets”, Trans. Amer. Math. Soc. 71 (1951), 152–182.

[16] Misra A.K., “C-supersets, piecewise order-arcs and local arcwise connectedness in hyperspaces”, Q. & A. in General Topology, 8 (1990), 467–485.

[17] Mrówka S., “On the convergence of nets of sets”, Fund. Math. 45 (1958), 237–246.

[18] Nadler Jr. S.B., Hyperspaces of Sets, Monographs and Textbooks in Pure and Applied Math., Vol. 49, Marcel Dekker, New York, Basel, 1978. Reprinted in: Aportaciones Matemáticas de la Sociedad Matemática Mexicana, Serie Textos # 33, 2006.

[19] Wardle R.W., “On a property of J. L. Kelley”, Houston J. Math. 3 (1977), 291–299.

[20] Wojdysławski M., “Sur la contractibilité des hyperspaces des continus localment connexes”, Fund. Math. 30 (1938), 247–252.