Revista Integración, temas de matemáticas.
Vol. 39 No. 1 (2021): Revista integración, temas de matemáticas
Research and Innovation Articles

Properties of the Support of Solutions of a Class of 2-Dimensional Nonlinear Evolution Equations.

Eddye Bustamante
National university of Colombia
José Jiménez Urrea
National university of Colombia.

Published 2021-05-19

Keywords

  • Nonlinear evolution equations,
  • weighted Sobolev spaces,
  • Carleman estimates

How to Cite

Bustamante, E., & Jiménez Urrea, J. (2021). Properties of the Support of Solutions of a Class of 2-Dimensional Nonlinear Evolution Equations. Revista Integración, Temas De matemáticas, 39(1), 41–50. https://doi.org/10.18273/revint.v39n1-2021003

Abstract

In this work we consider equations of the form

∂tu + P(D)u + u^{t}∂xu = 0,

where P(D) is a two-dimensional differential operator, and l ∈ N. We prove that if u is a sufficiently smooth solution of the equation, such that supp u(0), supp u(T) ⊂ [−B, B] × [−B, B] for some B > 0, then there exists R_0 > 0 such that supp u(t) ⊂ [-R_0,R_0]×[-R_0,R_0] for every t ∈ [0, T].

Downloads

Download data is not yet available.

References

  1. Ablowitz M., Nonlinear dispersive waves: asymptotic analysis and solitons, Cambridge University Press, 2011.
  2. Benzekry S., et. al., “Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth”, PLOS Comput. Biol., 10 (2014), No. 8, 1-19. doi: 10.1371/journal.pcbi.1003800
  3. Biagioni H.A. and Linares F., “Well-posedness results for the modified Zakharov-Kuznetsov equation”, Birkhäuser, Basel, 54 (2003), 181-189.
  4. Bourgain J., “On the compactness of the support of solutions of dispersive equations”, Internat. Math. Res. Notices, (1997), No. 9, 437-447. doi: 10.1155/S1073792897000305
  5. Bustamante E., Isaza P. and Mejía J., “On uniqueness properties of solutions of the Zakharov–Kuznetsov equation”, J. Funct. Anal., 254 (2013), No. 11, 2529-2549. doi: 10.1016/j.jfa.2013.03.003
  6. Bustamante E., Isaza P. and Mejía J., “On the support of solutions to de ZakharovKuznetsov equation”, J. Differential Equations, 251 (2011), No. 10, 2728-2736. doi: 10.1016/j.jde.2011.05.013
  7. Faminskii A.V., “The Cauchy problem for the Zakharov-Kuznetsov equation”, Differential Equations, 31 (1995), No. 6, 1002-1012.
  8. Hall E.J. and Giaccia A.J., Radiobiology for the Radiologists, Lippincott Williams & Wilkins (LWW), 8th ed., Philadelphia, 2018.
  9. Kenig C., Ponce G. and Vega L., “On the support of solutions to the generalized KdV equation”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), No. 2, 191-208. doi: 10.1016/S0294-1449(01)00073-7
  10. Larkin N.A., Kawahara-Burgers equation on a strip, Adv. Math. Phys., Maringá, (2015). doi: 10.1155/2015/269536
  11. Larkin N.A., “The 2D Kawahara equation on a half-strip”, Appl. Math. Optim., 70 (2014), No. 3, 443-468. doi: 10.1007/s00245-014-9246-4
  12. Linares F. and Pastor A., “Local and global well-posedness for the 2D generalizes Zakharov-Kuztnesov equation”, J. Funct. Anal., 260 (2011), No. 4, 1060-1085. doi: 10.1016/j.jfa.2010.11.005
  13. Linares F. and Pastor A., “Well-posedness for the two-dimensional modified ZakharovKuznetsov equation”, SIAM J. Math. Anal., 41 (2009), No. 4, 1323-1339. doi: 10.1137/080739173
  14. Linares F., Pastor A. and Saut J.C., “Well-Posedness for the ZK Equation in a Cylinder and on the Background of a KdV Soliton”, Comm. Partial Differential Equations, 35 (2010), No. 9, 1674-1689. doi: 10.1080/03605302.2010.494195
  15. Nahas J. and Ponce G., “On the persistent properties of solutions to semi-linear Schrödinger equation”, Comm. Partial Differential Equations, 34 (2009), No. 10-12, 1208-1227. doi: 10.1080/03605300903129044
  16. Panthee M., “A note on the unique continuation property for Zakharov-Kuznetsov equation”, Nonlinear Anal., 59 (2004), No. 3, 425-438. doi: 10.1016/j.na.2004.07.022
  17. Tao T., Nonlinear dispersive equations, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, vol. 106, Providence, RI, 2006.
  18. Zakharov V.E. and Kuznetsov E.A., “On three-dimensional solitons”, Soviet Phys. JETP., 29 (1974), 594-597.