Revista Integración, temas de matemáticas.
Vol. 39 No. 1 (2021): Revista integración, temas de matemáticas
Research and Innovation Articles

Gray images of constacyclic codes over Galois rings R of nilpotency index 3.

Angel R. García Ramírez
BUAP
Carlos A. López Andrade
BUAP
David Villa Hernández
BUAP

Published 2021-05-19

How to Cite

García Ramírez, A. R., López Andrade, C. A., & Villa Hernández, D. (2021). Gray images of constacyclic codes over Galois rings R of nilpotency index 3. Revista Integración, Temas De matemáticas, 39(1), 57–78. https://doi.org/10.18273/revint.v39n1-2021005

Abstract

We will state necessary and sufficient conditions for the image under the Gray map of a R-constacyclic code to be Fpm-quasi-cyclic code. We study the Witt vectors to get a way to operate the µ-reduction of padic components of the elements of the Galois rings of nilpotency index 3, R = GR(p3, m). We analyze Galois rings, its mostly relevant properties, and we focus in the p-adic representation of their elements. Later on, we examine construction of the Witt vectors rings and its operations, in particular, we get explicit expressions for operations of addition and product of the elements in the truncated Witt vectors ring of length 3, W3(Fpm). Finally, we will use these operations and an isomorphism between GR(p3, m) and W3(Fpm) to get a way to operate the µ-reductions described above.

Downloads

Download data is not yet available.

References

  1. Dinh H.Q., Liu H., Liu X. and Sriboonchitta S., “On structure and distances of some classes of repeated-root constacyclic codes over Galois rings”, Finite Fields Appl., 43 (2017), 86- 105. doi: 10.1016/j.ffa.2016.09.004
  2. Dinh H.Q. and López-Permouth S.R., “Cyclic and negacyclic codes over finite chain rings”, IEEE Trans. Inform. Theory, 50 (2004), No. 8, 1728-1744. doi: 10.1109/TIT.2004.831789
  3. Gómez-Calderon J. and Mullen G.L., “Galois rings and algebraic cryptography”, Acta Arith., 59 (1991), No. 4, 317-328. doi: 10.4064/aa-59-4-317-328.
  4. Greferath M. and Schmidt S.E., “Gray isometries for finite chain rings and a nonlinear ternary (36, 312, 15) code”, IEEE Trans. Inform. Theory, 45 (1999), No. 7, 2522-2524. doi:10.1109/18.796395
  5. Nechaev A.A. and Khonol’d T., “Fully weighted modules and representations of codes”, Probl. Inf. Transm., 35 (1999), No. 3, 205-223; translation from Probl. Peredachi Inf., 35 (1999), No. 3, 18-39. MR1730800
  6. Jacobson N., Basic Algebra II, Dover Publications, 2nd ed., 2009, New York.
  7. Hammons Jr. A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A. and Solé P., “The Z4- linearity of Kerdock, Preparata, Goethals, and related codes”, IEEE Trans. Inform. Tehory, 40 (1994), No. 2, 301-319. doi: 10.1109/18.312154
  8. Kanwar P. and López-Permouth S.R., “Cyclic Codes over the Integers Modulo p m”, Finite Fields Appl., 3 (1997), No. 4, 334-352. doi:10.1006/ffta.1997.0189
  9. Karpilovsky G., Topics in field theory, North-Holland Publishing Co., vol. 155, Amsterdam, 1989.
  10. Lidl R. and Niederreiter H., Finite fields, Cambridge University Press, 2nd ed.,vol. 20, Cambridge, 1997.
  11. Ling S. and Blackford J.T., “Zpk+1-Linear Codes”, IEEE Trans. Inform. Theory, 48 (2002), No. 9, 2592-2605. doi: 10.1109/TIT.2002.801473
  12. López-Andrade C.A. and Tapia-Recillas H., “On the linearity and quasi-cyclicity of the gray image of codes over a Galois ring”, Amer. Math. Soc., 537 (2011), 255-268. doi: 10.1090/conm/537/10580
  13. Nechaev A.A., “Kerdock code in a cyclic form”, Discrete Math. Appl., 1 (1991), No. 4, 365-384. doi:10.1515/dma.1991.1.4.365
  14. Özbudak F. and Saygi Z., “Some constructions of systematic authentication codes using galois rings”, Des. Codes Cryptogr., 41 (2006), No. 3, 343-357. doi: 10.1007/s10623-006-9021-x
  15. Sobhani R. and Esmaeili M., “Cyclic and negacyclic codes over the Galois ring GR(p2, m)”, Discrete Appl. Math., 157 (2009), No. 13, 2892-2903. doi: 10.1016/j.dam.2009.03.001
  16. Shanbhag A.G., Kumar P.V. and Helleseth T., “An upper bound for the extended Kloosterman sums over Galois rings”, Finite Fields Appl., 4 (1998), No. 3, 218-238. doi: 10.1006/ffta.1998.0211
  17. Wan Z.X., Lectures on finite fields and Galois rings, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. doi: 10.1142/5350