Revista Integración, temas de matemáticas.
Vol. 40 No. 1 (2022): Revista Integración, temas de matemáticas
Research and Innovation Articles

Polynomial stability of a thermoelastic system with linear boundary dissipation and second sound

Ruth Milena Cortés
Universidad Distrital Francisco José de Caldas, Facultad de Ciencias y Educación, Bogotá, Colombia.

Published 2022-03-01

Keywords

  • Thermoelastic System,
  • Cattaneo’s Law Diffusion,
  • Fourier’s Law,
  • Polynomial Decay,
  • Lyapunov’s Method

How to Cite

Cortés, R. M. (2022). Polynomial stability of a thermoelastic system with linear boundary dissipation and second sound. Revista Integración, Temas De matemáticas, 40(1), 59–75. https://doi.org/10.18273/revint.v40n1-2022003

Abstract

This paper shows a thermoelastic system defined in Ω ×R+, Ω ⊂ Rn, n ≥ 2 with heat conduction given by Cattaneo’s law. By introducing a linear dissipation mechanism on a part of the boundary, we obtain the well-posedness of the system and the polynomial decay of the energy in the solution.

Downloads

Download data is not yet available.

References

  1. Borichev A. and Tomilov Y., “Optimal polynomial decay of functions and operator semigroups”, Math. Ann., 347 (2010), No. 2, 455-478. doi: 10.1007/s00208-009-0439-0
  2. Cattaneo C., “Sulla conduzione del calore”, Atti Sem. Mat. Fis. Univ. Modena, 3 (1948), 83-101.
  3. Chandrasekharaiah D.S., “Thermoelasticity with second sound: a review”, Appl. Mech. Rev. March., 39 (1986), No. 3, 355-376. doi: 10.1115/1.3143705
  4. Dafermos C.M, “On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity”, Arch. Ration. Mech. Anal., 29 (1968), No. 4, 241-271. doi: 10.1007/BF00276727
  5. Ismscher T. and Racke, R., “Sharp decay rates in parabolic and hyperbolic thermoelasticity”, IMA J. Appl. Math., 71 (2006), No. 3, 459-478. doi: 10.1093/imamat/hxh110
  6. Kovalenko A.D., Thermoelasticity: basic theory and applications., Wolters-Noordhoff, Groningen, 1969.
  7. Lagnese J.E., “Decay of solutions of wave equations in a bounded region with boundary dissipation”, J. Differential Equations, 50 (1983), No. 2, 163-182. doi: 10.1016/00220396(83)90073-6
  8. Lagnese J.E., “Note on boundary stabilization of wave equations”, SIAM J. Control Optim., 26 (1988), No. 5, 1250-1256. doi: 10.1137/0326068
  9. Lebeau G. and Zuazua E., “Sur la décroissance non uniforme de l’énergie dans le système de la thermoélasticité linéaire”, C. R. Math. Acad. Sci. Soc. R. Can., 324 (1997), No. 4, 409-415. doi: 10.1016/S0764-4442(97)80077-8
  10. Liu W. and Zuazua E., “Uniform stabilization of the higher-dimensional system of thermoelasticity with a nonlinear boundary feedback”, Quart. Appl. Math., 59 (2001), No. 2, 269-314. doi: 10.1090/qam/1828455
  11. Liu W., “Partial exact controllability and exponential stability in higher-dimensional linear thermoelasticity”, ESAIM Control Optim. Calc. Var., 3 (1998), 23-48. doi: 10.1051/cocv:1998101
  12. Liu Z. and Zheng S., Semigroups associated with dissipative systems, CRC Press, vol. 398, Oxford, 1999.
  13. Narukawa K., “Boundary value control of thermoelastic systems”, Hiroshima Math. J., 13 (1983), No. 2, 227-272. doi: 10.32917/hmj/1206133391
  14. Pazy A., Semigroups of linear operators and applications to partial differential equations, Springer Science & Business Media, New York, vol. 44, 2012.
  15. Racke R. and Ya-Guang W., “Asymptotic behavior of discontinuous solutions in 3-d thermoelasticity with second sound”, Quart. Appl. Math., 66 (2008), No. 4, 707-724. doi: 10.1090/S0033-569X-08-01121-2
  16. Racke R., “Thermoelasticity with second sound-exponential stability in linear and non-linear 1-d”, Math. Methods Appl. Sci., 25 (2002), No. 5, 409-441. doi: 10.1002/mma.298
  17. Sidoroff F., “Mécanique des milieux continus”, École D’ingénieur (1980), 166.
  18. Tarabek M.A., “On the existence of smooth solutions in one-dimensional nonlinear thermoelasticity with second sound”, Quarterly of Applied Mathematics, 50 (1992), No. 4, 727-742. doi: 10.1090/qam/1193663
  19. Zuazua E., “Uniform Stabilization of the wave equation by nonlinear Boundary Feedback”, SIAM J. Control Optim., 28 (1990), No. 2, 466-477. doi: 10.1137/0328025