Research and Innovation Articles
Polynomial stability of a thermoelastic system with linear boundary dissipation and second sound
Published 2022-03-01
Keywords
- Thermoelastic System,
- Cattaneo’s Law Diffusion,
- Fourier’s Law,
- Polynomial Decay,
- Lyapunov’s Method
How to Cite
Cortés, R. M. (2022). Polynomial stability of a thermoelastic system with linear boundary dissipation and second sound. Revista Integración, Temas De matemáticas, 40(1), 59–75. https://doi.org/10.18273/revint.v40n1-2022003
Copyright (c) 2022 Revista Integración, temas de matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
This paper shows a thermoelastic system defined in Ω ×R+, Ω ⊂ Rn, n ≥ 2 with heat conduction given by Cattaneo’s law. By introducing a linear dissipation mechanism on a part of the boundary, we obtain the well-posedness of the system and the polynomial decay of the energy in the solution.
Downloads
Download data is not yet available.
References
- Borichev A. and Tomilov Y., “Optimal polynomial decay of functions and operator semigroups”, Math. Ann., 347 (2010), No. 2, 455-478. doi: 10.1007/s00208-009-0439-0
- Cattaneo C., “Sulla conduzione del calore”, Atti Sem. Mat. Fis. Univ. Modena, 3 (1948), 83-101.
- Chandrasekharaiah D.S., “Thermoelasticity with second sound: a review”, Appl. Mech. Rev. March., 39 (1986), No. 3, 355-376. doi: 10.1115/1.3143705
- Dafermos C.M, “On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity”, Arch. Ration. Mech. Anal., 29 (1968), No. 4, 241-271. doi: 10.1007/BF00276727
- Ismscher T. and Racke, R., “Sharp decay rates in parabolic and hyperbolic thermoelasticity”, IMA J. Appl. Math., 71 (2006), No. 3, 459-478. doi: 10.1093/imamat/hxh110
- Kovalenko A.D., Thermoelasticity: basic theory and applications., Wolters-Noordhoff, Groningen, 1969.
- Lagnese J.E., “Decay of solutions of wave equations in a bounded region with boundary dissipation”, J. Differential Equations, 50 (1983), No. 2, 163-182. doi: 10.1016/00220396(83)90073-6
- Lagnese J.E., “Note on boundary stabilization of wave equations”, SIAM J. Control Optim., 26 (1988), No. 5, 1250-1256. doi: 10.1137/0326068
- Lebeau G. and Zuazua E., “Sur la décroissance non uniforme de l’énergie dans le système de la thermoélasticité linéaire”, C. R. Math. Acad. Sci. Soc. R. Can., 324 (1997), No. 4, 409-415. doi: 10.1016/S0764-4442(97)80077-8
- Liu W. and Zuazua E., “Uniform stabilization of the higher-dimensional system of thermoelasticity with a nonlinear boundary feedback”, Quart. Appl. Math., 59 (2001), No. 2, 269-314. doi: 10.1090/qam/1828455
- Liu W., “Partial exact controllability and exponential stability in higher-dimensional linear thermoelasticity”, ESAIM Control Optim. Calc. Var., 3 (1998), 23-48. doi: 10.1051/cocv:1998101
- Liu Z. and Zheng S., Semigroups associated with dissipative systems, CRC Press, vol. 398, Oxford, 1999.
- Narukawa K., “Boundary value control of thermoelastic systems”, Hiroshima Math. J., 13 (1983), No. 2, 227-272. doi: 10.32917/hmj/1206133391
- Pazy A., Semigroups of linear operators and applications to partial differential equations, Springer Science & Business Media, New York, vol. 44, 2012.
- Racke R. and Ya-Guang W., “Asymptotic behavior of discontinuous solutions in 3-d thermoelasticity with second sound”, Quart. Appl. Math., 66 (2008), No. 4, 707-724. doi: 10.1090/S0033-569X-08-01121-2
- Racke R., “Thermoelasticity with second sound-exponential stability in linear and non-linear 1-d”, Math. Methods Appl. Sci., 25 (2002), No. 5, 409-441. doi: 10.1002/mma.298
- Sidoroff F., “Mécanique des milieux continus”, École D’ingénieur (1980), 166.
- Tarabek M.A., “On the existence of smooth solutions in one-dimensional nonlinear thermoelasticity with second sound”, Quarterly of Applied Mathematics, 50 (1992), No. 4, 727-742. doi: 10.1090/qam/1193663
- Zuazua E., “Uniform Stabilization of the wave equation by nonlinear Boundary Feedback”, SIAM J. Control Optim., 28 (1990), No. 2, 466-477. doi: 10.1137/0328025