Revista Integración, temas de matemáticas.
Vol. 42 No. 1 (2024): Revista Integración, temas de matemáticas
Research and Innovation Articles

The Cantor-Schröder-Bernstein Theorem in some categories of modules

Diego Andrés Peralta
Universidad Industrial de Santander
Héctor Pinedo
Universidad Industrial de Santander

Published 2024-02-14

Keywords

  • Cantor-Schröder-Bernstein theorem,
  • Dedekind finite,
  • orthogonal modules,
  • chain conditions

How to Cite

Peralta Reyes, D. A., & Pinedo Tapia, H. E. (2024). The Cantor-Schröder-Bernstein Theorem in some categories of modules. Revista Integración, Temas De matemáticas, 42(1), 23–30. https://doi.org/10.18273/revint.v42n1-2024002

Abstract

The Cantor-Schröder-Bernstein theorem has been studied in several categories throughout mathematics. In this article, we prove that this theorem holds in some relevant categories of modules, such as noetherian, and artinian, and prove that some strong versions of it also hold the category of finitely generated modules over a principal ideal domain.

Downloads

Download data is not yet available.

References

  1. Bumby R.T., “Modules which are isomorphic to submodules of each other”, Arch. Math, 16 (1965), 184-185.
  2. Don Laackman, “The Cantor-Schröeder-Bernstein property in categories”, The University of Chicago, (2010). https://math.uchicago.edu/∼may/VIGRE/VIGRE2010/REUPapers/Laackman.pdf
  3. Freytes H., “An Algebraic Version of the Cantor-Bernstein-Schröder Theorem”, Czech Math J, 54 (2004), 609-621. doi: 10.1007/s10587-004-6412-x
  4. Krause H., “Krull-Schmidt categories and projective covers”, Expo. Math., 33 (2015), No. 4, 535-549. doi: 10.1016/j.exmath.2015.10.001
  5. Jacobson N., Basic Algebra II, W.H. Freeman and Company, New York, 1989.
  6. Martín E., “The Cantor-Schörder-Bernstein Theorem for ∞-groupoids”, J. Homotopy Relat. Struct., 16 (2021), No. 3, 363-366.