Revista Integración, temas de matemáticas.
Vol. 29 No. 1 (2011): Revista Integración, temas de matemáticas
Research and Innovation Articles

Knot groups with two generators

Christian Pommerenke
Technische Universität Berlin, Institut fürMathematik, D-10623 Berlin, Germany
Bio
Margarita Toro
Universidad Nacional de Colombia, Escuela deMatemáticas, Medellín, Colombia
Bio

Published 2011-01-31

Keywords

  • knot group,
  • group presentation,
  • hyperbolic groups,
  • tunnel oneknots,
  • palindrome,
  • bridges
  • ...More
    Less

How to Cite

Pommerenke, C., & Toro, M. (2011). Knot groups with two generators. Revista Integración, Temas De matemáticas, 29(1), 1–14. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/2407

Abstract

We study knot groups that admit a presentation with two generators and one relation. We say that a presentation a, b | r is palindromic if r is a palindrome, that is, if r is a word that reads the same forwards and backwards. We study conditions that allow us to change the given presentation to obtain a palindromic presentation. We prove that if the knot group G admits a faithful discrete SL(2,C)-representation then G admits a palindromic presentation.

Downloads

Download data is not yet available.

References

  1. Burde G. and Zieschang H., Knots, Gruyter Studies in Mathematics, 5. Walter de Gruyter,Berlin, 1985.
  2. Boileau M. and Weidmann R., “The structure of 3-manifolds with two-generated fundamental group”, Topology 44 (2005), no. 2, 283–320.
  3. Callahan J., “Conjugate generators of knot and link groups”, J. Knot Theory Ramifications 19 (2010), no. 7, 905–916.
  4. Fine B., Levin F. and Rosenberger G., “Faithful complex representations of one relator groups”, New Zealan J. Math. 26 (1997), no. 1, 45–52.
  5. Gilman J. and Keen L., “Discreteness criteria and the hyperbolic geometry of palindromes”, Conform. Geom. Dyn. 13 (2009), 76–90.
  6. Gordon C. and Luecke J., “Knots are determined by their complements”, Bull. Amer. Math. Soc. 20 (1989), no. 1, 83–87.
  7. Hilden M., Tejada D. and Toro M., “Tunnel number one knots have palindrome presentations”, J. Knot Theory Ramifications 11 (2002), no. 5, 815–831.
  8. Hilden M., Tejada D. y Toro M., “Topología y simplificación de presentaciones de grupos”, Lect. Mat. 23 (2002), no. 2, 75–96.
  9. Kawauchi A., A survey of knot theory, Birkhäuser Verlag, 1996.
  10. Morimoto K. and Sakuma M., “On unknotting tunnels for knots”, Math. Ann. 289 (1991), no. 1, 143–167.
  11. Norwood F., “Every two generator knot is prime”, Proc. Amer. Math. Soc. 86 (1982), no. 1, 143–147.
  12. Pommerenke C. and Toro M., “On the two-parabolic subgroups of SL(2, C)”, Rev. Colombiana Mat. 45 (2011), no. 1, 37–50.
  13. Riley R., “Nonabelian representations of 2-bridge knot groups”, Quart. J. Math. Oxford Ser. (2) 35 (1984), no. 138, 191–208.