Research and Innovation Articles
Published 2011-01-31
Keywords
- knot group,
- group presentation,
- hyperbolic groups,
- tunnel oneknots,
- palindrome
- bridges ...More
How to Cite
Pommerenke, C., & Toro, M. (2011). Knot groups with two generators. Revista Integración, Temas De matemáticas, 29(1), 1–14. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/2407
Abstract
We study knot groups that admit a presentation with two generators and one relation. We say that a presentation a, b | r is palindromic if r is a palindrome, that is, if r is a word that reads the same forwards and backwards. We study conditions that allow us to change the given presentation to obtain a palindromic presentation. We prove that if the knot group G admits a faithful discrete SL(2,C)-representation then G admits a palindromic presentation.
Downloads
Download data is not yet available.
References
- Burde G. and Zieschang H., Knots, Gruyter Studies in Mathematics, 5. Walter de Gruyter,Berlin, 1985.
- Boileau M. and Weidmann R., “The structure of 3-manifolds with two-generated fundamental group”, Topology 44 (2005), no. 2, 283–320.
- Callahan J., “Conjugate generators of knot and link groups”, J. Knot Theory Ramifications 19 (2010), no. 7, 905–916.
- Fine B., Levin F. and Rosenberger G., “Faithful complex representations of one relator groups”, New Zealan J. Math. 26 (1997), no. 1, 45–52.
- Gilman J. and Keen L., “Discreteness criteria and the hyperbolic geometry of palindromes”, Conform. Geom. Dyn. 13 (2009), 76–90.
- Gordon C. and Luecke J., “Knots are determined by their complements”, Bull. Amer. Math. Soc. 20 (1989), no. 1, 83–87.
- Hilden M., Tejada D. and Toro M., “Tunnel number one knots have palindrome presentations”, J. Knot Theory Ramifications 11 (2002), no. 5, 815–831.
- Hilden M., Tejada D. y Toro M., “Topología y simplificación de presentaciones de grupos”, Lect. Mat. 23 (2002), no. 2, 75–96.
- Kawauchi A., A survey of knot theory, Birkhäuser Verlag, 1996.
- Morimoto K. and Sakuma M., “On unknotting tunnels for knots”, Math. Ann. 289 (1991), no. 1, 143–167.
- Norwood F., “Every two generator knot is prime”, Proc. Amer. Math. Soc. 86 (1982), no. 1, 143–147.
- Pommerenke C. and Toro M., “On the two-parabolic subgroups of SL(2, C)”, Rev. Colombiana Mat. 45 (2011), no. 1, 37–50.
- Riley R., “Nonabelian representations of 2-bridge knot groups”, Quart. J. Math. Oxford Ser. (2) 35 (1984), no. 138, 191–208.