Revista Integración, temas de matemáticas.
Vol. 29 No. 2 (2011): Revista Integración, temas de matemáticas
Research and Innovation Articles

Triplets associated to virtual knot diagrams

Margarita Toro
Universidad Nacional de Colombia
Bio
José Gregorio Rodríguez
Universidad Nacional de Colombia
Bio

Published 2011-11-23

Keywords

  • triplets,
  • virtual knots diagrams,
  • virtual knots,
  • based matrix,
  • nudal codes,
  • combinatorial knots
  • ...More
    Less

How to Cite

Toro, M., & Rodríguez, J. G. (2011). Triplets associated to virtual knot diagrams. Revista Integración, Temas De matemáticas, 29(2), 97–108. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/2552

Abstract

In this paper we study the set T of triplets (E, A, B), where E pertenece {-1,1}n, A pertenece Zn and B is an integral antisymmetric matrix of order n, n pertenece Nu{0}. We define an equivalence relation on the set T and then we study properties of its equivalence classes. We describe a method to assign to each virtual knot diagram a triplet, and this is the motivation to study the set of triplets. As the assignation of a triplet depends on the virtual knot diagram, it is not a virtual knot invariant. But we try to solve this problem by using the equivalence relation defined on T.

Downloads

Download data is not yet available.

References

[1] Cairns G. and Elton D., “The Planarity Problem for Signed Gauss Words”, J. Knot Theory Ramifications, 2, No. 4 (1993), 359-367.

[2] Kauffman L.H., “Virtual knot theory”, European J. Combin. 20 (1999), 663–690.

[3] Kaufman L.H. and Manturov V.O., “Virtual knots and links” (Russian), Tr. Mat. Inst. Steklova 252 (2006), 114–133; translation in Proc. Steklov Inst. Math. 252 (2006), 104–121.

[4] Kawauchi A., A survery of knot theory, Birkhäuser Verlag, Basel, 1996.

[5] Manturov V., Knot theory, Chapman & Hall, Boca Raton, FL, 2004.

[6] Rodríguez J.G., Nudos virtuales, Tesis Doctoral, Universidad Nacional de Colombia. 2011.

[7] Rodríguez J.G. and Toro M., “Virtual knot groups and combinatorial knots”, Sao Paulo Journal of Mathematical Sciences 3, 1 (2009), 297–314.

[8] Toro M., “Nudos combinatorios y mariposas”, Rev. Acad. Colomb. Cienc. 28, 106 (2004), 79–86.

[9] Toro M., Programación en Mathematica con aplicaciones a la Teoría de Nudos. Bogotá, Universidad Nacional de Colombia, 2004.

[10] Toro M. y Rodríguez J.G., “Nudos combinatorios: una nueva visión de los nudos virtuales”, preprint, 2009.

[11] Turaev V., “Cobordism of knots on surfaces”, Journal of Topology 1, No. 2 (2008), 285–305