Research and Innovation Articles
Published 2011-11-23
Keywords
- alternating multilinear function,
- antipalindromic vector,
- exterior product,
- palindromic vector,
- reversing
- vector product ...More
How to Cite
Acosta Humánez, P., Aranda, M., & Núñez, R. (2011). Some remarks on a generalized vector product. Revista Integración, Temas De matemáticas, 29(2), 151–162. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/2556
Abstract
In this paper we use a generalized vector product to construct an exterior form A : (R")fc -A R®, where (£) =k < n. Finally, for n = k — 1 we introduce the reversing operation to study this generalized vector product over palindromic and antipalindromic vectors.
Downloads
Download data is not yet available.
References
[1] Acosta-Humánez P., Chuquen A. and Rodríguez A., “Pasting and Reversing operations over some rings”, Boletín de Matemáticas, 17 (2010), 143–164
[2] Acosta-Humánez P., Chuquen A. and Rodríguez A., “Pasting and Reversing operations over some vector spaces”, Preprint (2011), 23p.
[3] Aranda M. and Núñez R., “The Cramer’s rule via generalized vector product over Rn” (Spanish), Universitas Scientorum, Investigaciones Matemáticas, 8 (2003), 13–15.
[4] Harris J., Algebraic Geometry, A First Course, Springer, New York, 1992.
[5] Hodge W.V.D. and Pedoe D., Methods of Algebraic Geometry, I, Cambridge University Press, 1994.
[6] Lang S., Linear Algebra, Undergraduate Texts in Mathematics, Springer, New York, 1987.
[7] Marmolejo M., “Vector product over Rn: The Lagrange’s general identity” (Spanish), Matemáticas enseñanza universitaria, 3 (1994), 109–117.
[8] Olivert J., Structures of multilinear algebra (Spanish), Universidad de Valencia, Valencia, 1996.
[2] Acosta-Humánez P., Chuquen A. and Rodríguez A., “Pasting and Reversing operations over some vector spaces”, Preprint (2011), 23p.
[3] Aranda M. and Núñez R., “The Cramer’s rule via generalized vector product over Rn” (Spanish), Universitas Scientorum, Investigaciones Matemáticas, 8 (2003), 13–15.
[4] Harris J., Algebraic Geometry, A First Course, Springer, New York, 1992.
[5] Hodge W.V.D. and Pedoe D., Methods of Algebraic Geometry, I, Cambridge University Press, 1994.
[6] Lang S., Linear Algebra, Undergraduate Texts in Mathematics, Springer, New York, 1987.
[7] Marmolejo M., “Vector product over Rn: The Lagrange’s general identity” (Spanish), Matemáticas enseñanza universitaria, 3 (1994), 109–117.
[8] Olivert J., Structures of multilinear algebra (Spanish), Universidad de Valencia, Valencia, 1996.