Revista Integración, temas de matemáticas.
Vol. 25 No. 1 (2007): Revista Integración, temas de matemáticas
Research and Innovation Articles

Colapso gravitacional radiativo esféricamente simétrico en relatividad general: introducción del factor de flujo, el factor de Eddington y la influencia de la relación de clausura entre ellos sobre la evolución del sistema

A. A. Navarro L.
Escuela de Física, Universidad Industrial de Santander
L. A. Núñez
Centro de Física Fundamental, Universidad de Los Andes, y Centro Nacional de Cálculo Científico
J. A. Rueda H.
International Center for Relativistic Astrophysics-ICRA and University of Rome
J. D. Sanabria Gómez
Escuela de Física, Universidad Industrial de Santander

Published 2007-04-30

Keywords

  • gravitational collapse,
  • Classical General Relativity,
  • post-quasistatic approximation,
  • relativistic stars

How to Cite

Navarro L., A. A., Núñez, L. A., Rueda H., J. A., & Sanabria Gómez, J. D. (2007). Colapso gravitacional radiativo esféricamente simétrico en relatividad general: introducción del factor de flujo, el factor de Eddington y la influencia de la relación de clausura entre ellos sobre la evolución del sistema. Revista Integración, Temas De matemáticas, 25(1), 51–56. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/263

Abstract

The H–J–Rs’ method [Phys. Rev. D22, 2305 (1980)] is extended to include the Eddington’s variable factor, the radiation flux factor and a closure relationship between them in order to show its influence on the behavior of density, pressure, fluid velocity and energy radiation flux, among others, of an object under gravitational collapse within the framework of general relativity. The post-quasistatic approximation of Herrera et al [Phys. Rev. D65, 104004 (2002)] along with the Tolman VI equation of state and the Lorentz–Eddington, Bowers–Wilson and Maximum Packing relationships were used to find that the choice of different closure relationships does not affect the global behavior of the system but only the instantaneous values of the different physical quantities.

 

Downloads

Download data is not yet available.

References

[1] J.A. Rueda H., L.A. Núñez, “General Relativistic Radiant Shock Waves in the Post-Quasistatic Approximation”, J. Phys.: Conf. Ser. 66, 012042 (2007).

[2] J. Font, “Numerical Hydrodynamics in General Relativity”, Living Rev. Relativity. 6, 4 (2003).

[3] L. Herrera, J. Jiménez, G.J. Ruggeri, “Evolution of radiating fluid spheres in general relativity”, Phys. Rev. D22, 002305 (1980).

[4] L. Herrera, W. Barreto, A. Di Prisco, N.O. Santos, “Relativistic Gravitational Collapse in noncomoving coordinates: the Post-Quasistatic Approximation”, Phys. Rev. D65, 104004 (2002). [Preprint gr–qc 0202051]

[5] W. Barreto, B. Rodríguez, H. Martínez, “Radiating fluid spheres in the effective variables approximation”, Astrophys.Space Sci. 282, 581 (2002).

[6] Aguirre, L.A. Núñez, T. Soldovieri, “Variable Eddington Factor and Radiating Slowly Rotating Bodies in General Relativity”, Preprint gr–qc 0503085.

[7] J.A. Pons, J. Ma. Ibáñez, J.A. Miralles, “Hyperbolic character of the angular moment equations of radiative transfer and numerical methods”, Mon. Not. R. Astr. Soc. 317, 550 (2000).

[8] J.M. Smit, L.J. Van De Horn, S.A. Bludman, “Closure in flux-limited neutrino diffusion and two-moment transport”, Astron. Astrophys. 356, 559 (2000).

[9] A.A. Navarro, L.A. Núñez, J.A. Rueda y J.D. Sanabria-Gómez, “Colapso Gravitacional Radiativo Esféricamente Simétrico en la Aproximación Poscuasiestática”,Rev. Col. Fis. 40, 210 (2008). Versión electrónica disponible en
http://calima.univalle.edu.co/newrevista.