Research and Innovation Articles
Published 2013-07-29
Keywords
- Cone,
- continuum,
- fixed point property,
- product,
- semiuniversal mapping
- suspension ...More
How to Cite
Tenorio, J. F. (2013). Some results about semiuniversal mappings. Revista Integración, Temas De matemáticas, 31(1), 43–51. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/3382
Abstract
In this paper we present some results concerning semiuniversal mappings. We obtain fixed point theorems for products, cones and suspensions over continua.
Downloads
Download data is not yet available.
References
[1] Bustamante J., Escobedo R. y Macías-Romero F., “A fixed point theorem for Whitney blocks”, Topology Appl. 125 (2002), 315–321.
[2] Charatonik J.J. y Escobedo R., “On semiuniversal mappings”, Continuum Theory, Lectures Notes in Pure and Appl. Math. 230 (2002), 95-111.
[3] Davis J.F., “The equivalence of zero span and zero semispan”, Proc. Amer. Math. Soc., 90 (1984), 133–138.
[4] Escobedo R., López M. de J. y Macías S., “On the hyperspace suspension of a continuum”, Topology Appl. 138 (2004), 109–124.
[5] Escobedo R., López M. de J. y Tenorio J.F., “Universality of maps on suspensions over products of span zero continua”. To appear in Houston J. Math., (2013), 1–10.
[6] Holsztyński W., “Une généralisation du théorème de Brouwer sur les points invariants”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1964), 603–606.
[7] Holsztyński W., “Universal mappings and fixed point theorems”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 433–438.
[8] Holsztyński W., “Universality of mappings onto the products of snake-like spaces. Relation with dimension”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 161–167.
[9] Illanes A., Nadler S.B. Jr., “Fundamentals and Recent Advances”, Monographs and Textbooks in Pure and Applied Math., vol. 216, Marcel Dekker, New York, (1999).
[10] Kuratowski K., Topology, Vol. II, Academic Press, New York, 1968.
[11] Lelek A., “Disjoint mappings and the span of spaces”, Fund. Math. 55 (1964), 199–214.
[12] Lelek A., “On the surjective span and semispan of connected metric spaces”, Colloq. Math. 37 (1977), 35–45.
[13] Marsh M.M., “s-Connected spaces and the fixed point property”, Topology Proc. 8 (1983), 85–97.
[14] Marsh M.M., “Some generalizations of universal mappings”, Rocky Mountain J. Math. 27 (1997), 1187–1198.
[15] Marsh M.M., “Products of span zero continua and the fixed point property”, Proc. Amer. Math. Soc. 132 (2004), 1849–1853.
[16] Nadler S.B. Jr., “Continuum Theory: An Introduction”, Monographs and Textbooks in Pure and Applied Math., vol. 158, Marcel Dekker, New York, (1992).
[17] Nadler S.B. Jr., “The fixed point property for continua, Aportaciones Matemáticas”, Sociedad Matemática Mexicana, Textos, vol. 30, (2005).
[18] Tenorio J.F., Productos tipo disco y funciones inducidas a suspensiones de productos de continuos, Thesis (Ph.D.), Benemérita Universidad Autonónoma de Puebla, México, 2007.
[2] Charatonik J.J. y Escobedo R., “On semiuniversal mappings”, Continuum Theory, Lectures Notes in Pure and Appl. Math. 230 (2002), 95-111.
[3] Davis J.F., “The equivalence of zero span and zero semispan”, Proc. Amer. Math. Soc., 90 (1984), 133–138.
[4] Escobedo R., López M. de J. y Macías S., “On the hyperspace suspension of a continuum”, Topology Appl. 138 (2004), 109–124.
[5] Escobedo R., López M. de J. y Tenorio J.F., “Universality of maps on suspensions over products of span zero continua”. To appear in Houston J. Math., (2013), 1–10.
[6] Holsztyński W., “Une généralisation du théorème de Brouwer sur les points invariants”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1964), 603–606.
[7] Holsztyński W., “Universal mappings and fixed point theorems”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 433–438.
[8] Holsztyński W., “Universality of mappings onto the products of snake-like spaces. Relation with dimension”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 161–167.
[9] Illanes A., Nadler S.B. Jr., “Fundamentals and Recent Advances”, Monographs and Textbooks in Pure and Applied Math., vol. 216, Marcel Dekker, New York, (1999).
[10] Kuratowski K., Topology, Vol. II, Academic Press, New York, 1968.
[11] Lelek A., “Disjoint mappings and the span of spaces”, Fund. Math. 55 (1964), 199–214.
[12] Lelek A., “On the surjective span and semispan of connected metric spaces”, Colloq. Math. 37 (1977), 35–45.
[13] Marsh M.M., “s-Connected spaces and the fixed point property”, Topology Proc. 8 (1983), 85–97.
[14] Marsh M.M., “Some generalizations of universal mappings”, Rocky Mountain J. Math. 27 (1997), 1187–1198.
[15] Marsh M.M., “Products of span zero continua and the fixed point property”, Proc. Amer. Math. Soc. 132 (2004), 1849–1853.
[16] Nadler S.B. Jr., “Continuum Theory: An Introduction”, Monographs and Textbooks in Pure and Applied Math., vol. 158, Marcel Dekker, New York, (1992).
[17] Nadler S.B. Jr., “The fixed point property for continua, Aportaciones Matemáticas”, Sociedad Matemática Mexicana, Textos, vol. 30, (2005).
[18] Tenorio J.F., Productos tipo disco y funciones inducidas a suspensiones de productos de continuos, Thesis (Ph.D.), Benemérita Universidad Autonónoma de Puebla, México, 2007.