Research and Innovation Articles
Quenching analysis for a nonlocal diffusion equation with absorption term
Published 2014-10-30
Keywords
- Non local diffusion,
- Neumann,
- absorption,
- quenching
How to Cite
Bogoya, M., & Mora, C. P. (2014). Quenching analysis for a nonlocal diffusion equation with absorption term. Revista Integración, Temas De matemáticas, 32(2), 129–138. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4377
Abstract
We study a nonlocal diffusion problem with absorption term and Neumann boundary conditions. We prove the existence and uniqueness of solutions, and give a comparison principle for them. The quenching phenomena of solutions is analyzed for some absorption term.
To cite this article: M. Bogoya, C.P. Mora, Análisis de extinción de una ecuación de difusión no local con término de absorción, Rev. Integr. Temas Mat. 32 (2014), no. 2, 129-139.
Downloads
Download data is not yet available.
References
- Andreu-Vaillo F., Mazón J.M., Rossi J.D. and Todelo-Melero J.J., Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, AMS 165, 2010.
- Aronson D.G., “The porous medium equation”, in Nonlinear diffusion problems, Lecture Notes in Math. 1224, Springer, Berlin (1986), 1-46.
- Bogoya M., “A nonlocal nonlinear diffusion equation in higher space dimensions”, J. Math. Anal. Appl. 344 (2008), no. 2, 601-615.
- Cortázar C., Elgueta M. and Rossi J.D., “A nonlocal diffusion equation whose solutions develop a free boundar”, Ann. Henri Poincaré 6 (2005), no. 2, 269-281.
- Kawarada H., “On solutions of initial-boundary problem for ut = uxx + 1/(1 − u)”, Publ. Res. Inst. Math. Sci. 10 (1974/75), no. 3, 729-736.
- Kirk C.M. and Roberts C.A., “A review of quenching results in the context of nonlinear Volterra equations”, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10 (2003), no.
- -3, 343-356.
- Levine H.A., “The phenomenon of quenching: a survey”, in Trends in the theory and practice of nonlinear analysis, North-Holland Math. Stud. 110, North-Holland, Amsterdam (1985),
- -286.
- Levine H.A., “Quenching and beyond: a survey of recent results”, in Nonlinear Mathematical Problems in Industry, II, GAKUTO Internat. Ser. Math. Sci. Appl. 2, Gakk¯otosho, Tokyo
- (1993), 501-512
- Vázquez J.L., “An introduction to the mathematical theory of the porous medium equation”, in Shape optimization and free boundaries, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 380, Kluwer Acad. Publ., Dordrecht (1992), 347-389.