Revista Integración, temas de matemáticas.
Vol. 32 No. 2 (2014): Revista Integración, temas de matemáticas
Research and Innovation Articles

Quenching analysis for a nonlocal diffusion equation with absorption term

Mauricio Bogoya
Universidad Nacional de Colombia
Claudia Patricia Mora
Universidad Pedagógica y Tecnológica de Colombia

Published 2014-10-30

Keywords

  • Non local diffusion,
  • Neumann,
  • absorption,
  • quenching

How to Cite

Bogoya, M., & Mora, C. P. (2014). Quenching analysis for a nonlocal diffusion equation with absorption term. Revista Integración, Temas De matemáticas, 32(2), 129–138. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4377

Abstract

We study a nonlocal diffusion problem with absorption term and Neumann boundary conditions. We prove the existence and uniqueness of solutions, and give a comparison principle for them. The quenching phenomena of solutions is analyzed for some absorption term.

To cite this article: M. Bogoya, C.P. Mora, Análisis de extinción de una ecuación de difusión no local con término de absorción, Rev. Integr. Temas Mat. 32 (2014), no. 2, 129-139.

Downloads

Download data is not yet available.

References

  1. Andreu-Vaillo F., Mazón J.M., Rossi J.D. and Todelo-Melero J.J., Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, AMS 165, 2010.
  2. Aronson D.G., “The porous medium equation”, in Nonlinear diffusion problems, Lecture Notes in Math. 1224, Springer, Berlin (1986), 1-46.
  3. Bogoya M., “A nonlocal nonlinear diffusion equation in higher space dimensions”, J. Math. Anal. Appl. 344 (2008), no. 2, 601-615.
  4. Cortázar C., Elgueta M. and Rossi J.D., “A nonlocal diffusion equation whose solutions develop a free boundar”, Ann. Henri Poincaré 6 (2005), no. 2, 269-281.
  5. Kawarada H., “On solutions of initial-boundary problem for ut = uxx + 1/(1 − u)”, Publ. Res. Inst. Math. Sci. 10 (1974/75), no. 3, 729-736.
  6. Kirk C.M. and Roberts C.A., “A review of quenching results in the context of nonlinear Volterra equations”, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10 (2003), no.
  7. -3, 343-356.
  8. Levine H.A., “The phenomenon of quenching: a survey”, in Trends in the theory and practice of nonlinear analysis, North-Holland Math. Stud. 110, North-Holland, Amsterdam (1985),
  9. -286.
  10. Levine H.A., “Quenching and beyond: a survey of recent results”, in Nonlinear Mathematical Problems in Industry, II, GAKUTO Internat. Ser. Math. Sci. Appl. 2, Gakk¯otosho, Tokyo
  11. (1993), 501-512
  12. Vázquez J.L., “An introduction to the mathematical theory of the porous medium equation”, in Shape optimization and free boundaries, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 380, Kluwer Acad. Publ., Dordrecht (1992), 347-389.