Revista Integración, temas de matemáticas.
Vol. 32 No. 2 (2014): Revista Integración, temas de matemáticas
Research and Innovation Articles

On the convergence of a secant method for nonlinear matrix equations

Mauricio Macías C.
Universidad del Cauca
Héctor J. Martínez
Universidad del Valle
Rosana Pérez
Universidad del Cauca

Published 2014-10-31

Keywords

  • Matrix function,
  • Fréchet operator,
  • Fréchet differentiable,
  • secant method,
  • nonlinear matrix equation,
  • superlinear convergence
  • ...More
    Less

How to Cite

Macías C., M., Martínez, H. J., & Pérez, R. (2014). On the convergence of a secant method for nonlinear matrix equations. Revista Integración, Temas De matemáticas, 32(2), 181–197. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4382

Abstract

In this paper we develop a general theory of convergence of a secant method to solve nonlinear matrix equations. In addition, we give sufficient conditions in order to this method provide a local and superlinearly convergent algorithm.

To cite this article: E.M. Macías, H.J. Martínez, R. Pérez, Sobre la convergencia de un método secante para ecuaciones matriciales no lineales, Rev. Integr. Temas Mat. 32 (2014), no. 2, 181-197.

Downloads

Download data is not yet available.

References

  1. Acevedo R., Pérez R. y Arenas F., “El método DL para resolver sistemas de ecuaciones no lineales”, Matemáticas: Enseñanza Universitaria 16 (2008), 23-36.
  2. Bittani S., Laub A.J. and Willems C., The Riccati equation, Springer-Verlag, Berlin, 1991.
  3. Davis J.G., “Numerical solution of a quadratic matrix equation”, SIAM J Sci and Stat. Comput. 2 (1981), no. 2, 164-175.
  4. Dennis J.E. and Schnabel R.B., Numerical methods for unconstrained optimization and nonlinear equations, Prentice-Hall, New Jersey, 1983.
  5. Dennis J.E. and Walker H.F., “Convergence theorems for least-change secant update methods”, SIAM J. Numer. Anal. 18 (1981), no. 6, 949-987.
  6. Golub H.G., Nash S. and Van Loan C., “A Hessenberg-Schur method for the problem AX + XB = C”, IEEE Trans. Automat. Control 24 (1979), no. 6, 909-913.
  7. Hashemi B. and Dehghan M., “Efficient computation of enclosures for the exact solvents of a quadratic matrix equation”, Electron. J. Linear Algebra 20 (2010), 519-536.
  8. Higham N.J., Functions of matrices theory and computations, SIAM, 2008.
  9. Higham N.J. and Kim H., “Numerical analysis of a quadratic matrix equation”, IMA J. Numer. Anal. 20 (2000), no. 4, 499-519.
  10. Higham N.J. and Kim H., “Solving a quadratic matrix equation by Newton’s methods with exact line searches”, SIAM J. Matrix Anal. Appl. 23 (2001), no. 2, 303-316.
  11. Kreyszig E., Introductory functional analysis with applications, Wiley & Sons, Canada, 1978.
  12. Lancaster P. and Rodman L., Algebraic Riccati equations, The Clarendon Press, Oxford University Press, New York, 1995.
  13. Martínez J.M., “On the relation between two local convergence theories of least-change secant updates
  14. methods”, Math. Comp. 59 (1992), no. 200, 457-481.
  15. Martínez J.M. and Santos S.A., “Métodos computacionais de otimização”, 20 Colóquio Brasileiro de Matemática, IMPA 1995, p. 87.
  16. Monsalve M. and Raydan M., “Newton’s method and secant methods: A long-standing relationship from vectors to matrices”, Port. Math. 68 (2011), no. 4, 431-475.
  17. Monsalve M. and Raydan M., “A secant method for nonlinear matrix problems”, Chapter
  18. of Numerical Linear Algebra in Signals, Systems and Control, P. Van Dooren et al. (eds.), Springer Verlag. 80, 2011, 387-412.
  19. Parks P.C., “AM Lyapunov’s stability theory–100 years on”, IMA J. Math. Control Inform. 9 (1992), no. 4, 275-303.
  20. Pérez R. y Díaz T., Minimización sin restricciones, Editorial Universidad del Cauca, 2010.
  21. Tisseur F. and Meerbergen K., “The quadratic eigenvalue problem”, SIAM Rev. 43 (2001), no. 2, 235-286.