Revista Integración, temas de matemáticas.
Vol. 33 No. 1 (2015): Revista Integración, temas de matemáticas
Research and Innovation Articles

Analysis of perturbations of moments associated with orthogonality linear functionals through the Szegö transformation

Edinson Fuentes
Universidad Pedagógica y Tecnológica de Colombia
Luis E. Garza
Universidad Nacional de Colombia. Universidad de Colima.

Published 2015-05-21

Keywords

  • Orthogonal polynomials,
  • Stieltjes and Carathéodory functions,
  • Hankel and Toeplitz matrices,
  • Szegö transformation

How to Cite

Fuentes, E., & Garza, L. E. (2015). Analysis of perturbations of moments associated with orthogonality linear functionals through the Szegö transformation. Revista Integración, Temas De matemáticas, 33(1), 61–82. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4770

Abstract

In this paper, we consider perturbations to a sequence of moments associated with an orthogonality linear functional that is represented by a positive measure supported in [−1, 1]. In particular, given a perturbation to such a measure on the real line, we analyze the perturbation obtained on the corresponding measure on the unit circle, when both measures are related through the Szegö transformation. A similar perturbation is analyzed through the inverse Szegö transformation. In both cases, we show that the applied perturbation can be expressed in terms of the singular part of the measures, and also in terms of the corresponding sequences of moments.

To cite this article: E. Fuentes, L.E. Garza, Analysis of perturbations of moments associated with orthogonality linear functionals through the Szegö transformation, Rev. Integr. Temas Mat. 33 (2015), no. 1, 61-82.

Downloads

Download data is not yet available.

References

  1. Castillo K., Dimitrov D.K., Garza L.E. and Rafaeli F.R., “Perturbations on the antidiagonals of Hankel matrices”, Appl. Math. Comput. 221 (2013), 444 -452.
  2. Castillo K., Garza L.E. and Marcellán F., “Pertubations on the subdiagonals of Toeplitz matrices”, Linear Algebra Appl. 434 (2011), no. 6, 1563-1579.
  3. Chihara T.S., An Introduction to orthogonal polynomials, Gordon and Breach Science Publishers, New York-London-Paris, 1978.
  4. Garza, L.E., “Transformaciones Espectrales, Funciones de Carathéodory y Polinomios Ortogonales en la Circunferencia Unidad”, Tesis doctoral, Universidad Carlos III de Madrid,
  5. España, 2009, 164 p.
  6. Garza L.E., Hernández J. and Marcellán F., “Spectral transformations of measures supported on the unit circle and the Szeg´´o transformation”, Numer. Algorithms 49 (2008), no. 1, 169-185.
  7. Kreyszig E., Introduction to functional analysis with applications, John Wiley & Sons Inc., New York, 1989.
  8. Marcellán F. and Hernández J., “Christoffel transforms and Hermitian linear functionals”, Mediterr. J. Math. 2 (2005), no. 4, 451-458.
  9. Marcellán F. y Quintana Y., Polinomios ortogonales no estándar. Propiedades algebraicas y analíticas, XXII Escuela Venezolana de Matemáticas, 2009.
  10. Peherstorfer F., “A special class of polynomials orthogonal on the circle including the associated polynomials”, Constr. Approx. 12 (1996), 161-185.
  11. Simon B., Orthogonal Polynomials on the unit circle. Part 2. Spectral theory. American Mathematics Society,Providence, RI, 2005.
  12. Spiridonov V., Vinet L. and Zhedanov A., “Spectral transformations, self-similar reductions and orthogonal polynomials”, J. Phys. A. Math. 30 (1997), 7621-7637.
  13. Szeg´´o G., Orthogonal Polynomials. Fourth Edition, American Mathematics Society, Providence, RI, 1975.
  14. Tasis C., “Propiedades diferenciales de los polinomios ortogonales relativos a la circunferencia unidad”, Tesis doctoral, Universidad de Cantabria, España, 1989.
  15. Zhedanov A., “Rational spectral transformations and orthogonal polynomials”, J. Comput. Appl. Math. 85 (1997), 67-86.