Research and Innovation Articles
Published 2009-03-05
Keywords
- Clifford formalism,
- asymmetric fluid
How to Cite
kondrashuk, I., Notte-Cuello, E., & Rojas-Medar, M. A. (2009). Hodge operator and asymmetric fluid in unbounded domains. Revista Integración, Temas De matemáticas, 27(1), 1–13. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/482
Abstract
A system of equations modeling the stationary flow of an incompressible asymmetric fluid is studied for bounded domains of an arbitrary form. Based on the methods of Clifford analysis, we write the system of asymmetric fluid in the hypercomplex formulation and represent its solution in Clifford operator terms. We have significantly used Clifford algebra, and in particular the Hodge operator of the Clifford algebra to demonstrate the existence and uniqueness of the strong solution for arbitrary unbounded domains
Downloads
Download data is not yet available.
References
[1] Durán M., Ortega-Torres E., Rojas-Medar M. Proyecciones 22 (2003), N◦ 1, 63-79.
[2] P. Cerejeiras and U. Kähler: Math. Meth. Appl.Sci., 23 (2000), 81-101.
[3] Kondrashuk I., Notte-Cuello E. A. and Rojas-Medar M. A.: Bol. Soc. Esp. Mat. Apl. 47 (2009), 99-106.
[4] G. Lukaszewicz. “On stationary flows of asymetric fluids”. Volume XII, Rend. Accad. Naz. Sci. detta dei XL, 106 (1988), 35-44.
[5] G. Lukaszewicz. “Micropolar fluids. Theory and Applications, Modeling and Simlation in Science”, Engineering, Birkhauser, Boston (1999).
[6] W. A. Rodrigues Jr. and E. Capelas Oliveira: “The Many Faces of Maxwell, Dirac and Einstein Equations”. A Clifford Bundle Approach, Lecture Notes in Physics 722 (2007), Springer, New York.
[2] P. Cerejeiras and U. Kähler: Math. Meth. Appl.Sci., 23 (2000), 81-101.
[3] Kondrashuk I., Notte-Cuello E. A. and Rojas-Medar M. A.: Bol. Soc. Esp. Mat. Apl. 47 (2009), 99-106.
[4] G. Lukaszewicz. “On stationary flows of asymetric fluids”. Volume XII, Rend. Accad. Naz. Sci. detta dei XL, 106 (1988), 35-44.
[5] G. Lukaszewicz. “Micropolar fluids. Theory and Applications, Modeling and Simlation in Science”, Engineering, Birkhauser, Boston (1999).
[6] W. A. Rodrigues Jr. and E. Capelas Oliveira: “The Many Faces of Maxwell, Dirac and Einstein Equations”. A Clifford Bundle Approach, Lecture Notes in Physics 722 (2007), Springer, New York.