Revista Integración, temas de matemáticas.
Vol. 33 No. 2 (2015): Revista Integración
Research and Innovation Articles

On the existence of limit cycles for some planar vector fields

L. Rocío González-Ramírez
Universidad Michoacana de San Nicolás de Hidalgo. Catedrática Conacyt.
Osvaldo Osuna
Universidad Michoacana de San Nicolás de Hidalgo
Rubén Santaella-Forero
Universidad Michoacana de San Nicolás de Hidalgo

Published 2015-12-04

Keywords

  • Poincaré-Bendixson theorem,
  • trapping region,
  • Liénard equation,
  • limit cycles

How to Cite

González-Ramírez, L. R., Osuna, O., & Santaella-Forero, R. (2015). On the existence of limit cycles for some planar vector fields. Revista Integración, Temas De matemáticas, 33(2), 191–198. https://doi.org/10.18273/revint.v33n2-2015008

Abstract

In this work, we prove the existence of limit cycles in planar systems that can be written as appropriate perturbations of Hamiltonian systems. In particular, we obtain criteria for the existence of limit cycles for Liénard-type systems. We present examples in order to illustrate our results.

To cite this article:L.R. González-Ramírez, O. Osuna, R. Santaella-Forero, On the existence of limit cycles for some planar vector fields, Rev. Integr. Temas Mat. 33 (2015), No.2, 191–198.

 

Downloads

Download data is not yet available.

References

  1. Arrowsmith D.K. and Place C.M., Dynamical systems. Differential equations, maps and chaotic behaviour, Chapman & Hall, London, 1992.
  2. Bendixson I., “Sur les curbes définiés par des équations différentielles” (French), Acta Math. 24 (1901), No. 1, 1–88.
  3. Carletti T., Rosati L. and Villari G., “Qualitative analysis of phase portrait for a class of planar vector fields via the comparison method”, Nonlinear Anal. 67 (2007), No. 1, 39–51.
  4. Ciambellotti L., “Uniqueness of limit cycles for Liénard systems. A generalization of Massera’s theorem”, Qual. Theory Dyn. Syst. 7 (2009), No. 2, 405–410.
  5. Perko L., Differential equations and dynamical systems, Third edition, Texts in Applied Mathematics, 7, Springer-Verlag, New York, 2001.
  6. Poincaré H., “Mémoire sur les curbes définiés par une équation différentielle II”, J. Math. Pures Appl. 8 (1882), 251–296.
  7. Ye Y.Q., Cai S.L., Chen L.S., Huang K.C., Lou D.J., Ma Z.E., Wang E.N., Wang M.S. and Yang X.A., Theory of limit cycles. Translations of Mathematical Monographs, 66, American Mathematical Society, Providence, RI, 1986.