Published 2016-05-06
Keywords
- End point function,
- Whitney map,
- mid point function,
- hyperspace of arcs and singletons,
- midpoint
- end point ...More
How to Cite
Abstract
The hyperspace of arcs of a continuum was defined by Sam B. Nadler, Jr. in 1978. Later, A. Soto studied in 1999 the hyperspace of arcs and singletons of a continuum, which we will denote in this paper byM(X). In this article we introduce a midpoint function and the end point function in M(X), we present some of their basic properties, we compare them and we give a characterization of the continuity of both of them.
To cite this article: M. de J. López, P. Pellicer-Covarrubias, I. Serapio Ramos, Introducción a la función punto medio en continuos,Rev. Integr. Temas Mat. 34 (2016), No. 1, 109–123.
Downloads
References
- Illanes A., “Hyperspaces of arcs and two-point sets in dendroid”, Topology Appl. 117 (2002), No. 3, 307–317.
- Illanes A. and Nadler S.B. Jr., Hyperspaces. Fundamentals and recent advances, Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, Inc., New York, 1999.
- Kelley J. L., “Hyperspaces of a continuum”, Trans. Amer. Math. Soc. 52 (1942), 22–36.
- Nadler S.B. Jr., Continuum theory. An introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, Inc., New York, 1992.
- Nadler S.B. Jr., Hyperspaces of sets, Monographs and Textbooks in Pure and Applied Mathematics, 49, Marcel Dekker, Inc., New York-Basel, 1978.
- Soto A., “El hiperespacio de arcos de un continuo”, Tesis de licenciatura, Universidad Nacional Autónoma de México, 1999, 92 p.
- Villanueva H., “Encajando conos en hiperespacios”, Tesis de doctorado, Universidad NacionalAutónoma de México, 2012, 240 p.
- Whitney H., “Regular families of curves”, Ann. of Math. (2) 34 (1933), No. 2, 244–270.