Revista Integración, temas de matemáticas.
Vol. 34 No. 1 (2016): Revista Integración
Research and Innovation Articles

Introduction to the midpoint function in continua

María de Jesús López
Benemérita Universidad Autónoma de Puebla
Patricia Pellicer-Covarrubias
Universidad Nacional Autónoma de México
Iván Serapio Ramos
Benemérita Universidad Autónoma de Puebla

Published 2016-05-06

Keywords

  • End point function,
  • Whitney map,
  • mid point function,
  • hyperspace of arcs and singletons,
  • midpoint,
  • end point
  • ...More
    Less

How to Cite

López, M. de J., Pellicer-Covarrubias, P., & Serapio Ramos, I. (2016). Introduction to the midpoint function in continua. Revista Integración, Temas De matemáticas, 34(1), 109–123. https://doi.org/10.18273/revint.v34n1-2016007

Abstract

The hyperspace of arcs of a continuum was defined by Sam B. Nadler, Jr. in 1978. Later, A. Soto studied in 1999 the hyperspace of arcs and singletons of a continuum, which we will denote in this paper byM(X). In this article we introduce a midpoint function and the end point function in M(X), we present some of their basic properties, we compare them and we give a characterization of the continuity of both of them.

To cite this article: M. de J. López, P. Pellicer-Covarrubias, I. Serapio Ramos, Introducción a la función punto medio en continuos,Rev. Integr. Temas Mat. 34 (2016), No. 1, 109–123.

Downloads

Download data is not yet available.

References

  1. Illanes A., “Hyperspaces of arcs and two-point sets in dendroid”, Topology Appl. 117 (2002), No. 3, 307–317.
  2. Illanes A. and Nadler S.B. Jr., Hyperspaces. Fundamentals and recent advances, Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, Inc., New York, 1999.
  3. Kelley J. L., “Hyperspaces of a continuum”, Trans. Amer. Math. Soc. 52 (1942), 22–36.
  4. Nadler S.B. Jr., Continuum theory. An introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, Inc., New York, 1992.
  5. Nadler S.B. Jr., Hyperspaces of sets, Monographs and Textbooks in Pure and Applied Mathematics, 49, Marcel Dekker, Inc., New York-Basel, 1978.
  6. Soto A., “El hiperespacio de arcos de un continuo”, Tesis de licenciatura, Universidad Nacional Autónoma de México, 1999, 92 p.
  7. Villanueva H., “Encajando conos en hiperespacios”, Tesis de doctorado, Universidad NacionalAutónoma de México, 2012, 240 p.
  8. Whitney H., “Regular families of curves”, Ann. of Math. (2) 34 (1933), No. 2, 244–270.