Published 2016-12-12
Keywords
- Continuum,
- chainable,
- indecomposable,
- hyperspaces,
- second symmetric product
How to Cite
Abstract
Alejandro Illanes asked if the pseudoarc P has unique second symmetric product F2(P), this is, if X is a continuum such that there is a homeomorphism h : F2(P) → F2(X), then, is X homeomorphic to the pseudoarc ? In this paper we show that if X is an indecomposable chainable continuum and Y is a continuum such that F2(Y ) is homeomorphic to F2(X), then Y is indecomposable.
To cite this article: M. de J. López, E. Ramírez Márquez, Sobre el segundo producto simétrico de continuos indescomponibles y en cadenables, Rev. Integr. Temas Mat. 34 (2016), No. 2, 139-146.
Downloads
References
- Acosta G., Hernández-Gutíerrez R. and Martínez-de-la-Vega V., "Dendrites and symmetric products", Glas. Math. Ser. III 44 (2009) No. 1, 195-210.
- Bellamy D.P. and Lysko J.M., "Factorwise rigidity of the product of two pseudo-arcs", Topology Proc. 8 (1983), No. 1, 21-27.
- Bing R.H.,"A homogeneous indescomposable plane continuum", Duke Math. J. 15 (1948), 729-742.
- Castañeda E. and Illanes A., "Finite graphs have unique symmetric products", Topology Appl. 153 (2006), No. 9, 1434-1450.
- Hagopian C.L., "Mutual aposyndesis", Proc. Amer. Math. Soc. 23 (1969), 615-622.
- Hernández-Gutíerrez R. and Martínez-de-la-Vega V., "Rigidity of symmetric products", Topology Appl. 160 (2013), No. 13, 1577-1587.
- Herrera-Carrasco D., López M. de J. and Macías-Romero F., "Dendrites with unique symmetric products", Topology Proc. 34 (2009), 175-190.
- Illanes A., "Dendrites with unique hyperspace F_2 (X)", JP J. Geom. Topol. 2 (2002), No. 1, 75-96.
- Illanes A., "Uniqueness of hyperspaces", Questions Answers Gen. Topology 30 (2012), No. 1, 21-44.
- Illanes A. and Martínez-Montejano J.M., "Compactifications of [0,∞), with unique hyper-space F_n (X)", Glas. Mat. Ser. III 44 (2009), No. 2, 457-478.
- Lewis W., "The pseudo-arc", Bol. Soc. Mat. Mexicana (3) 5 (1999), No. 1, 25-77.
- Macías S., "Aposyndetic properties of symmetric products of continua", Topology Proc. 22 (1997), Spring, 281-296.
- Macías S., Topics on continua, Chapman & Hall/CRC, Boca Raton, FL, 2005.
- Nadler S.B., Jr., Continuum theory: An introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker Inc., New York, 1992.
- Nadler S.B., Jr., Hyperespaces of sets. A text with research questions, Monographs and Textbooks in Pure and Applied Mathematics, 49, Marcel Dekker, Inc., New York-Basel, 1978.
- Prajs J.R., "Mutual aposyndesis and products of solenoids", Topology Proc. 32 (2008), Spring, 339-349.