Revista Integración, temas de matemáticas.
Vol. 34 No. 2 (2016): Revista Integración
Research and Innovation Articles

On the second symmetric product of indecomposable chainable continua

María de Jesús López
Benemérita Universidad Autónoma de Puebla
Bio
Emanuel Ramírez Márquez
Benemérita Universidad Autónoma de Puebla

Published 2016-12-12

Keywords

  • Continuum,
  • chainable,
  • indecomposable,
  • hyperspaces,
  • second symmetric product

How to Cite

López, M. de J., & Ramírez Márquez, E. (2016). On the second symmetric product of indecomposable chainable continua. Revista Integración, Temas De matemáticas, 34(2), 139–146. https://doi.org/10.18273/revint.v34n2-2016003

Abstract

Alejandro Illanes asked if the pseudoarc P has unique second symmetric product F2(P), this is, if X is a continuum such that there is a homeomorphism h : F2(P) → F2(X), then, is X homeomorphic to the pseudoarc ? In this paper we show that if X is an indecomposable chainable continuum and Y is a continuum such that F2(Y ) is homeomorphic to F2(X), then Y is indecomposable.

To cite this article: M. de J. López, E. Ramírez Márquez, Sobre el segundo producto simétrico de continuos indescomponibles y en cadenables, Rev. Integr. Temas Mat. 34 (2016), No. 2, 139-146.

Downloads

Download data is not yet available.

References

  1. Acosta G., Hernández-Gutíerrez R. and Martínez-de-la-Vega V., "Dendrites and symmetric products", Glas. Math. Ser. III 44 (2009) No. 1, 195-210.
  2. Bellamy D.P. and Lysko J.M., "Factorwise rigidity of the product of two pseudo-arcs", Topology Proc. 8 (1983), No. 1, 21-27.
  3. Bing R.H.,"A homogeneous indescomposable plane continuum", Duke Math. J. 15 (1948), 729-742.
  4. Castañeda E. and Illanes A., "Finite graphs have unique symmetric products", Topology Appl. 153 (2006), No. 9, 1434-1450.
  5. Hagopian C.L., "Mutual aposyndesis", Proc. Amer. Math. Soc. 23 (1969), 615-622.
  6. Hernández-Gutíerrez R. and Martínez-de-la-Vega V., "Rigidity of symmetric products", Topology Appl. 160 (2013), No. 13, 1577-1587.
  7. Herrera-Carrasco D., López M. de J. and Macías-Romero F., "Dendrites with unique symmetric products", Topology Proc. 34 (2009), 175-190.
  8. Illanes A., "Dendrites with unique hyperspace F_2 (X)", JP J. Geom. Topol. 2 (2002), No. 1, 75-96.
  9. Illanes A., "Uniqueness of hyperspaces", Questions Answers Gen. Topology 30 (2012), No. 1, 21-44.
  10. Illanes A. and Martínez-Montejano J.M., "Compactifications of [0,∞), with unique hyper-space F_n (X)", Glas. Mat. Ser. III 44 (2009), No. 2, 457-478.
  11. Lewis W., "The pseudo-arc", Bol. Soc. Mat. Mexicana (3) 5 (1999), No. 1, 25-77.
  12. Macías S., "Aposyndetic properties of symmetric products of continua", Topology Proc. 22 (1997), Spring, 281-296.
  13. Macías S., Topics on continua, Chapman & Hall/CRC, Boca Raton, FL, 2005.
  14. Nadler S.B., Jr., Continuum theory: An introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker Inc., New York, 1992.
  15. Nadler S.B., Jr., Hyperespaces of sets. A text with research questions, Monographs and Textbooks in Pure and Applied Mathematics, 49, Marcel Dekker, Inc., New York-Basel, 1978.
  16. Prajs J.R., "Mutual aposyndesis and products of solenoids", Topology Proc. 32 (2008), Spring, 339-349.