How to Cite
Abstract
A detailed study of the Counter-Rotating Model (CRM) for generic fi-nite static axially symmetric thin disks with nonzero radial pressure is presented. We find a general constraint over the counter-rotating tan-gential velocities needed to cast the surface energy-momentum tensor of the disk as the superposition of two counter-rotating perfect fluids. We also found expressions for the energy density and pressure of the counter-rotating fluids. Then we shown that, in general, it is not possible to take the two counter-rotating fluids as circulating along geodesics neither take the two counter-rotating tangential velocities as equal and opposite. An specific example is studied where we obtain some CRM with well defined counter-rotating tangential velocities that are agree with the strong energy condition, but there are regions of the disk with negative energy density, in violation of the weak energy condition.
Downloads
References
[2] T. Morgan and L. Morgan, Phys. Rev. 183, 1097 (1969).
[3] L. Morgan and T. Morgan, Phys. Rev. D2, 2756 (1970).
[4] A. Chamorro, R. Gregory and J. M. Stewart, Proc. R. Soc. Lond. A 413, 251(1987).
[5] G. A. Gonz ́alez and P. S. Letelier. Class. Quantum. Grav. 16, 479 (1999).
[6] P. S. Letelier. Phys. Rev. D 60, 104042 (1999).
[7] J. Katz, J. Bi ̆c ́ak and D. Lynden-Bell, Class. Quantum Grav. 16, 4023 (1999).[8] D. Lynden-Bell and S. Pineault, Mon. Not. R. Astron. Soc. 185, 679 (1978).
[9] P.S. Letelier and S. R. Oliveira, J. Math. Phys. 28, 165 (1987).[10] J. P. S. Lemos, Class. Quantum Grav. 6, 1219 (1989).
[11] J. P. S. Lemos and P. S. Letelier, Class. Quantum Grav. 10, L75 (1993).
[12] J. Bi ̆c ́ak, D. Lynden-Bell and J. Katz, Phys. Rev. D47, 4334 (1993).
[13] J. Bi ̆c ́ak, D. Lynden-Bell and C. Pichon, Mon. Not. R. Astron. Soc. 265, 126(1993).[14] J. Bi ̆c ́ak and T. Ledvinka. Phys. Rev. Lett. 71, 1669 (1993).
[15] J. P. S. Lemos and P. S. Letelier, Phys. Rev D49, 5135 (1994).[16] J. P. S. Lemos and P. S. Letelier, Int. J. Mod. Phys. D5, 53 (1996).[17] C. Klein, Class. Quantum Grav. 14, 2267 (1997).
[18] G. A. Gonz ́alez and P. S. Letelier. Phys. Rev. D 62, 064025 (2000).[19] V. C. Rubin, J. A. Graham and J. D. P Kenney. Ap. J. 394, L9-L12, (1992).[20] H. Rix, M. Franx, D. Fisher and G. Illingworth. Ap. J. 400, L5-L8, (1992).
[21] H. Weyl. Ann. Phys. 54, 117 (1917).
[22] H. Weyl. Ann. Phys. 59, 185 (1919).
[23] P. S. Letelier. Phys. Rev. D 22, 807 (1980).
[24] S. Chandrasekar,The Mathematical Theory of Black Holes. (Oxford UniversityPress, 1992).
[25] H. P. Robertson and T. W. Noonan.Relativity and Cosmology. (Saunders,1969).[26] S. W. Hawking and G. F. R. Ellis.The Large Scale Structure of Space-Time.Cambridge University Press, Cambridge (1973).