Revista Integración, temas de matemáticas.
Vol. 36 No. 1 (2018): Revista Integración, temas de matemáticas
Research and Innovation Articles

Jordan form of the Fréchet derivative of matrix functions

Miguel A. Marmolejo
Universidad del Valle, Departamento de Matemáticas, Cali, Colombia.

Published 2018-06-18

Keywords

  • Matrix function,
  • Jordan canonical form,
  • Fréchet derivative

How to Cite

Marmolejo, M. A. (2018). Jordan form of the Fréchet derivative of matrix functions. Revista Integración, Temas De matemáticas, 36(1), 1–19. https://doi.org/10.18273/revint.v36n1-2018001

Abstract

In this paper we present a formula to evaluate matrix functions f : A ⊂ C 2×2 → C 2×2, in terms of two scalar functions that only depend on the trace and the determinant of X ∈ C 2×2 . The knowledge of the Fréchet derivatives of the trace and determinant functions is used to determine the Fréchet derivative of f(·). As a central result, Jordan's canonical form of the Fréchet derivative Df(X) : C 2×2 → C 2×2 is given.

Downloads

Download data is not yet available.

References

[1] Cardoso J.R. and Sadeghi A., “On the conditioning of the matrix-matrix exponentiation”, Numer. Algorithms (2017), 1–21
[2] Deadman E. and Relton S.D., “Taylor’s theorem for matrix functions with applications to condition number estimation”, Linear Algebra Appl. 504 (2016), 354–371.

[3] Golub G. and Van Loan C., Matrix Computations, The Johns Hopkins University Press, Baltimore, 1996.

[4] Higham N.J., Functions of Matrices: Theory and Computation, Siam, Philadelphia, 2008.

[5] Higham and Al-Mohy A.H., “Computing matrix functios”, Acta Numer. 19 (2010), 159–208.

[6] Higham N.J. and Lijing L., “Matrix Functions: A short Course”, en Ser. Contemp. Appl. Math. 19, Higher Ed. Press, Beijing, (2015), 1–27.

[7] Horn R.A. and Johnson C.R., Topics in Matrix Analysis, Cambridge University Press, New York, 1991.

[8] Kandolf P. and Relton S.D., “A block Krylov method to compute the action of the Fréchet derivative of a matrix function on a vector with applications to condition number estimation”, Siam J. Sci. Comp. 39 (2017), No. 4, A1416–A1434.

[9] Najfeld I. and Havel T.F., “Derivatives of the matrix exponential and their computation”, Adv. in Appl. Math. 16 (1995), No. 3, 321–375.

[10] Rinehart R.F., “The Equivalence of Definitions of a Matric Function”, Amer. Math. Monthly 62 (1955), No. 6, 395-414.

[11] Stickel E., “On the Fréchet Derivative of Matrix Functions”, Linear Algebra Appl. 91 (1987), 83–88.