Revista Integración, temas de matemáticas.
Vol. 17 No. 1 (1999): Revista Integración, temas de matemáticas
Research and Innovation Articles

Comportamiento cualitativo de las soluciones de ecuaciones diferenciales sin la condición signum

Francisco Rafael Martínez Sánchez
Universidad de Oriente
Bio
Antonio Iván Ruiz Chaveco
Universidad de Oriente
Bio

Published 1999-04-15

Keywords

  • Nonnegative damping,
  • continuability in the future,
  • boundedness,
  • nonlinear differential equations

How to Cite

Martínez Sánchez, F. R., & Ruiz Chaveco, A. I. (1999). Comportamiento cualitativo de las soluciones de ecuaciones diferenciales sin la condición signum. Revista Integración, Temas De matemáticas, 17(1), 11–25. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/876

Abstract

In this paper we study the behaviour of solutions of second order damped nonlinear differential equation,  x''+\phi(t,x,x') + a(t)g(x)k(x')=0,  without the signum condition: x g(x) > 0 for all x different 0. We establish sufficient conditions for the continuability in the future and boundedness of solutions of this equation. Our results generalize a number of existing results. 

Downloads

Download data is not yet available.

References

[1] Burton, L.A. (1965): “The generalized Liénard equation”,SIAM J. Control Op-tim.3: 223–230.

[2] Burton, T.A. (1977): “A continuation result for differential equations”,Proc.Amer. Math. Soc.67(2): 272–276.

[3] Burton, T.A.; Grimmer, G. (1971): “On continuability of solutions of secondorder differential equations”,Proc. Amer. Math. Soc.29: 277–283.

[4] Burton, T.A.; Grimmer, R. (1971): “On the asymptotic behaviour of solutionsofx′′+a(t)f(x) = 0”,Proc. Cambridge Philos. Soc.70: 77–88.

[5] Heidel, J.W. (1972): “A Lyapunov function for a generalized Li ́enard equation”,J. Math. Analysis Applic.39: 192–197.

[6] Huang, L. (1994): “On the necessary and sufficient conditions for the bounded-ness of the solutions of the nonlinear oscillating equation”,Nonlinear Analysis,Theory, Methods& Applications23(11): 1467–1475.

[7] Hurewicz, W. (1958):Lectures on Ordinary Differential Equations, The M.I.T.Press, Cambridge, Massachussetts and London.

[8] Martínez–Sánchez, F.R.; Ruiz–Chaveco, A.I. (2001): “Prolongabilidad al futuroy acotamiento de las soluciones de ecuaciones y sistemas de ecuaciones diferenciales de segundo orden”,Revista Ciencias Matemáticas U.H.(por aparecer).

[9] Martínez–Sánchez, F.R.; Ruiz–Chaveco, A.I. (2001): “On continuability of solu-tions of nonlinear differential equation without the signum condition”.ElectronicJournal of Qualitative Theory of Differential Equations(submitted for publication).

[10] Repilado–Ramírez, J.A.; Ruiz–Chaveco, A.I. (1985): “Sobre el comportamiento de las soluciones de la ecuación x′′+g(x)x′+a(t)f(x) = 0 (I)”,Revista Ciencias Matemáticas U.H.VI(1): 65–71.