Papel de la interleuquina-17 en procesos inflamatorios y patologías pulmonares
PDF

Palabras clave

Interleucina-17
Tuberculosis
Carcinoma broncogénico
Neumonía

Cómo citar

Losada, P. X., Cortés, J. S., Narváez, C. F., & Lastra, G. (2021). Papel de la interleuquina-17 en procesos inflamatorios y patologías pulmonares. Médicas UIS, 34(1), 55–62. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistamedicasuis/article/view/12265

Resumen

Introducción: Cuatro de las diez principales causas de muerte en el mundo corresponden a patologías pulmonares donde las infecciones respiratorias se ubican en tercer lugar y a su vez son uno de los principales motivos de consulta médica. Por otro lado, la interleuquina IL-17 parece tener un papel importante en la inmunopatogénesis de un gran número de enfermedades, pues se ha descrito que niveles
elevados en sangre periférica u otros fluidos corporales se relacionan con metástasis e infecciones. Diferente a patologías cutáneas e intestinales, donde el papel de la IL-17 se conoce con mayor detalle, en procesos pulmonares su rol es aún controversial. Objetivo: Describir conocimientos actuales sobre la función de la IL-17 en procesos inflamatorios y patologías locales pulmonares. Metodología de búsqueda: Se realizó una búsqueda bibliográfica de artículos originales y revisiones de tema en los motores de búsqueda MEDLINE y
Science Direct, de los cuales 50 cumplieron con los criterios de inclusión. Conclusiones: Se encontró que la respuesta de IL-17 parece estar relacionada con buen pronóstico en el caso de algunas neumonías bacterianas. Igualmente, el bloqueo de la vía de señalización de la IL-17 en neoplasias pulmonares podría ser beneficioso y se considera como un potencial blanco terapéutico en estas condiciones, por lo que los estudios en este tema continúan siendo fundamentales para conocer mejor el verdadero rol de esta proteína en diversas condiciones patológicas del pulmón. MÉD.UIS.2021;34(1): 55-62

PDF

Referencias

1. Organización Mundial de la salud. No Title [Internet]. Estimaciones de salud global por causa, edad, sexo, por país y por región.

2. Mcaleer JP, Kolls JK. Directing traffic: IL-17 and IL-22 coordinate pulmonary immune defense. Immunol Rev. 2014;260(1):129-44

3. Happel KI, Dubin PJ, Zheng M, Ghilardi N, Lockhart C, Quinton LJ, et al. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J Exp Med.
005;202(6):761–9.

4. Rudner XL, Happel KI, Young EA, Shellito JE. Interleukin-23 (IL-23)-IL-17 Cytokine Axis in Murine Pneumocystis carinii Infection. Infect Immun. 2007;75(6):3055–61.

5. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte
olonystimulating factor expression, neutrophil recruitment, and host defense. J Exp Med. 2001;194(4):519–27.

6. Huang W, Na L, Fidel PL, Schwarzenberger P. Requirement of Interleukin‐17A for Systemic Anti–Candida albicans Host Defense in Mice. J Infect Dis. 2004;190(3):624–31.

7. Kuwabara T, Ishikawa F, Kondo M, Kakiuchi T. The Role of IL-17 and Related Cytokines in Inflammatory Autoimmune Diseases. Mediators Inflamm. 2017;2017:3908061. PubMed MID: 28316374; PMC PMCID: PMC5337858.

8. Gaffen SL. Recent advances in the IL-17 cytokine family. Curr Opin Immuno. 2011;23(5):613-9

9. Onishi RM, Gaffen SL. Interleukin-17 and its target genes: Mechanisms of interleukin-17 function in disease. Immunology. 2010 Mar;129(3):311-21

10. Amatya N, Garg A V., Gaffen SL. IL-17 Signaling: The Yin and the Yang. Trends Immunol. 2017;38(5):310-322

11. Vélez-Marín VM, París-Ángel SC, García-Moreno LF. Interleuquina-17: características, vías de diferenciación, señalización y funciones biológicas. Iatreia. 2007;20(2):186-95.

12. He G, Zhang B, Zhang B, Qiao L, Tian Z, Zhai G, et al. Th17 cells and IL-17 are increased in patients with brain metastases from the primary lung cancer. Chinese J Lung Cancer. 2013;16(9):476–81.

13. Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14(9):585-600.

14. Seon HC, Park H, Dong C. Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J Biol Chem. 2006;281(47):35603–7.

15. Fu ZW, Zhang ZY, Ge HY. Mesenteric injection of adipose-derived mesenchymal stem cells relieves experimentally-induced colitis in rats by regulating Th17/Treg cell balance. Am J
ransl Res. 2018;10(1):54–66.

16. Egwuagu CE. STAT3 in CD4+ T helper cell differentiation and inflammatory diseases. Cytokine. 2009;47(3):149-56.

17. Lee SY, Lee SH, Yang EJ, Kim EK, Kim JK, Shin DY, Cho ML. Metformin Ameliorates Inflammatory Bowel Disease by Suppression of the STAT3 Signaling Pathway and Regulation f the between Th17/Treg Balance. PLoS One. 2015;10(9):e0135858.

18. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9(11):798-809.

19. Jin W, Dong C. IL-17 cytokines in immunity and inflammation. Emerg Microbes Infect. 2013;2(9):e60.

20. Dong C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol. 2008;8(5):337-48.

21. Sheng W, Yang F, Zhou Y, Yang H, Low PY, Kemeny DM, et al. STAT5 programs a distinct subset of GM-CSF-producing T helper cells that is essential for autoimmune
euroinflammation. Cell Res. 2014;24(12):1387–402.

22. Li Z, Li D, Tsun A, Li B. FOXP3+ regulatory T cells and their functional regulation. Cell Mol Immunol. 2015;12(5):558-65.

23. Goodman WA, Young AB, McCormick TS, Cooper KD, Levine AD. Stat3 Phosphorylation Mediates Resistance of Primary Human T Cells to Regulatory T Cell Suppression. J
mmunol. 2011;186(6):3336–45.

24. Geremia A, Jewell DP. The IL-23/IL-17 pathway in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol. 2012;6(2):223- 37.

25. Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin-17 family members. Immunity. 2011;34(2):149-62.

26. Schmidt EGW, Larsen HL, Kristensen NN, Poulsen SS, Pedersen AML, Claesson MH, et al. TH17 cell induction and effects of IL17A and IL-17F blockade in experimental colitis.
nflamm Bowel Dis. 2013;19(8):1567–76.

27. Al-Ramli W, Préfontaine D, Chouiali F, Martin JG, Olivenstein R, Lemière C, et al. T(H)17-associated cytokines (IL-17A and IL-17F) in severe asthma. J Allergy Clin Immunol.
009;123(5):1185-7.

28. Deng Y, Chang C, Lu Q. The Inflammatory Response in Psoriasis: a Comprehensive Review. Clin Rev Allergy Immunol. 2016;50(3):377-89.

29. Hueber W, Patel DD, Dryja T, Wright AM, Koroleva I, Bruin G, et al. Effects of AIN457, a Fully Human Antibody to Interleukin17A, on Psoriasis, Rheumatoid Arthritis, and Uveitis. Sci
ransl Med. 2010;2(52):52ra72.

30. Khader SA, Gaffen SL, Kolls JK. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol. 2009;2(5):403-11.

31. Tang H, Pang S, Wang M, Xiao X, Rong Y, Wang H, et al. TLR4 Activation Is Required for IL-17-Induced Multiple Tissue Inflammation and Wasting in Mice. J Immunol. 2010;185(4):2563–9.

32. Misiak A, Wilk MM, Raverdeau M, Mills KHG. IL-17–Producing Innate and Pathogen-Specific Tissue Resident Memory γδ T Cells Expand in the Lungs of Bordetella pertussis– nfected Mice. J Immunol. 2017;198(1):363–74.

33. Dubin PJ, Kolls JK. IL-23 mediates inflammatory responses to mucoid Pseudomonas aeruginosa lung infection in mice. Am J Physiol Lung Cell Mol Physiol. 2007;292(2): L519-28.

34. Singh RP, Hasan S, Sharma S, Nagra S, Yamaguchi DT, Wong DTW, et al. Th17 cells in inflammation and autoimmunity. Autoimmun Rev. 2014;13(12):1174–81.

35. Jurado JO, Pasquinelli V, Alvarez IB, Peña D, Rovetta AI, Tateosian NL, et al. IL-17 and IFN-γ expression in lymphocytes from patients with active tuberculosis correlates with the
everity of the disease. J Leukoc Biol. 2012;91(6):991–1002.

36. Fukui M, Shinjo K, Umemura M, Shigeno S, Harakuni T, Arakawa T, et al. Enhanced effect of BCG vaccine against pulmonary Mycobacterium tuberculosis infection in mice with lung
h17 response to mycobacterial heparin-binding hemagglutinin adhesin antigen. Microbiol Immunol. 2015;59(12):735–43.

37. Wang J, Li F, Wei H, Lian Z-X, Sun R, Tian Z. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell–dependent inflammation. J xp Med. 2014;211(12):2397–410.

38. Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman J, Chirieac LR, et al. Non–Small Cell Lung Cancer, Version 5.2017, NCCN Clinical Practice Guidelines in Oncology. J Natl
ompr Cancer Netw. 2017;15(4):504–35.

39. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J Thorac Oncol. 2015;10(9):1243–60.

40. Wu F, Xu J, Huang Q, Han J, Duan L, Fan J, et al. The role of interleukin-17 in Lung Cancer. Mediators Inflamm. 2016;2016:8494079.

41. Joerger M, Finn SP, Cuffe S, Byrne AT, Gray SG. The IL-17-Th1/ Th17 pathway: an attractive target for lung cancer therapy? Expert Opin Ther Targets. 2016;20(11):1339–56.

42. aabachi W, Amor A ben, Kaabachi S, Rafrafi A, Tizaoui K, Hamzaoui K. Interleukin-17A and -17F genes polymorphisms in lung cancer. Cytokine. 2014;66(1):23–9.

43. Wang H, Zhang Y, Liu Z, Zhang Y, Zhao H, Du S. The IL-17A G-197A and IL-17F 7488T/C polymorphisms are associated with increased risk of cancer in Asians: A meta-analysis.
rug Des Devel Ther. 2015;9:5159–68.

44. Chang SH, Mirabolfathinejad SG, Katta H, Cumpian AM, Gong L,no MS, et al. T helper 17 cells play a critical pathogenic rolen lung cancer. Proc Natl Acad Sci. 2014;111(15):5664–9.rP, Voronov E, et al. icroenvironment-Derived IL-1 and IL-17 Interact in the Control of Lung Metastasis. J Immunol. 2011;186(6):3462–71.

46. Reppert S, Boross I, Koslowski M, Türeci Ö, Koch S, Lehr HA,
et al. A role for T-bet-mediated tumour immune surveillance in
anti-IL-17A treatment of lung cancer. Nat Commun. 2011;2:600.
47. Reppert S, Koch S, Finotto S. IL-17A is a central regulator of lung
tumor growth. Oncoimmunology. 2012;1(5):783–5.
48. Qian X, Chen H, Wu X, Hu L, Huang Q, Jin Y. Interleukin-17
acts as double-edged sword in anti-tumor immunity and
tumorigenesis. Cytokine. 2017;89:34–44.
49. Losada PX, Perdomo-Celis F, Castro M, Salcedo C, Salcedo A,
DeLaura I, et al. Locally-secreted interleukin-6 is related with
radiological severity in smear-negative pulmonary tuberculosis.
Cytokine. 2020;127:154950.
earl JE, Sakamoto K, Gilmartin L, Bell GK, JelleyGibbs DM, et al. IL-23 Compensates for the absence of IL-12p70
and is essential for the IL-17 response during tuberculosis but
is dispensable for Protection and antigen-Specific IFN- gamma
responses if IL-12p70 is available. J Immunol. 2005;175(2):788–95.

Descargas

Los datos de descargas todavía no están disponibles.