Caracterización y fisiopatología del Sars-Cov-2, Revisión de la literatura actual

  • Hámilton Forero Argüello Universidad Industrial de Santander
  • Alejandra Hernández Martínez Universidad Industrial de Santander
  • Daniela Lobo Moncada Universidad Industrial de Santander
  • Diego Fernando García Bohórquez Universidad Industrial de Santander
  • Javier Enrique Fajardo Rivera Universidad Industrial de Santander

Resumen

La enfermedad por coronavirus 2019 (COVID-19) es causada por un nuevo betacoronavirus conocido como síndrome respiratorio agudo severo coronavirus-2 (SARS-CoV-2). Para el 22 de junio del 2021, el número de casos confirmados en todo el mundo había superado los 178 millones, con más de 3 millones de muertes. La fisiopatología de la COVID-19 a partir de la infección por SARS-CoV-2 no está del todo dilucidada. En el presente artículo se exponen los hallazgos encontrados después de la búsqueda en la literatura científica realizada en la base de datos PubMed entre octubre de 2020 y abril de 2021 en la cual se incluyeron 71 artículos, con el objetivo de la revisión fisiopatológica completa, detallada y actualizada del SARS-CoV-2, abordando temas como la caracterización y ciclo de vida del virus, el mecanismo de transmisión, la cinética viral y la respuesta inmune, junto con la dinámica fisiopatológica de la infección.

Palabras clave: COVID-19, SARS-CoV-2, Patogenicidad, Proteínas virales, Fisiopatología, Respuesta inmune

Descargas

La descarga de datos todavía no está disponible.

Referencias

1. Organización Panamericana de la Salud. Enfermedad por el Coronavirus (COVID-19) [Internet]. PAHO. 2020 [Citado Nov 2020]. Disponible en: https://coronavirus.jhu.edu/map.html

2. The Johns Hopkins University School of Medicine. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University [Internet]. CORONAVIRUS RESOURCE CENTER. 2020 [Citado Ene 2021]. Disponible en: https://coronavirus.jhu.edu/map.html

3. Wu YC, Chen CS, Chan YJ. The outbreak of COVID-19: An overview. J Chin Med Assoc [Internet]. 2020 Mar [Citado Octubre 2020];83 (3):217-20. Disponible en: https://pubmed.ncbi.nlm. nih.gov/32134861/

4. Ministerio de Salud y Protección Social de Colombia. CORONAVIRUS (COVID-19) [Internet]. Minsalud. 2020 [Enero 2021]. Disponible en: https://coronavirus.jhu.edu/map.html

5. Vellas C, Delobel P, de Souto Barreto P, Izopet J. COVID-19, Virology and Geroscience: A Perspective. J Nutr Health Aging [Internet]. 2020 [Citado Dic 2020];24 (7):685-91. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32744561/

6. Hussain A, Bhowmik B, do Vale Moreira NC. COVID-19 and diabetes: Knowledge in progress. Diabetes Res Clin Pract [Internet]. 2020 Apr [Citado Nov 2020];162:108142.Disponible en: https://pubmed.ncbi.nlm.nih.gov/32278764/

7. Huang Y, Yang C, Xu Xf, Xu W, Liu S. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020; 41:1141– 1149.

8. Naqvi AAT, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim Biophys Acta Mol Basis Dis [Internet].
2020 Oct [Citado Dic 2020];1866 (10):165878. Disponible en: https://pubmed.ncbi. nlm.nih.gov/32544429/

9. Helmy YA, Fawzy M, Elaswad A, Sobieh A, Kenney SP, Shehata AA. The COVID-19 Pandemic: A Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control. J Clin Med. 2020;9(4):1225.

10. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181(2):281-292.e6. Erratum en: Cell. 2020;183(6):1735.

11. Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W et al. Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses [Internet]. 2020 [citado 2020 Oct];12(4):372. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232198/

12. Lei X, Dong X, Ma R, Wang W, Xiao X, Tian Z, et al. Activation and evasion of type I interferon responses by SARS-CoV-2. Nat Commun [Internet]. 2020 [citado 2021 Ene];11(1). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392898/

13. Samavarchi-Tehrani P, Abdouni H, Knight J DR, Astori A, Samson R, Lin ZY, et al. A SARS-CoV-2 – host proximity interactome. BioRxiv [preprint]. 2020 bioRvix 282103 [publicado 2020 Sept 04; citado 2020 Oct]: [49 p.] Disponible en: https://www.biorxiv. org/content/10.1101/2020.09.03.282103v1

14. Zhang Y, Zhang J, Chen Y, Luo B, Yuan Y, Huang F, et al. The ORF8 Protein of SARS-CoV-2 Mediates Immune Evasion through Potently Downregulating MHC-I. BioRxiv [preprint]. 2020 bioRvix 111823 [publicado 2020 May 24; citado 2021Ene]: [41 p.] Disponible en: https://www.biorxiv.org/ content/10.1101/2020.05.24.111823v1

15. Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol [Internet]. 2020 [citado 2020 Dic];41(12):1100-1115. Disponible en: https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC7556779/

16. Morris G, Bortolasci CC, Puri BK, Olive L, Marx W, O’Neil A, et al. The pathophysiology of SARS-CoV-2: A suggested model and therapeutic approach. Life Sci [Internet]. 2020 [citado 2020 Oct];258:118166. Disponible en: https://www.ncbi.nlm.nih.gov/ pmc/articles/PMC7392886/

17. Li S, Li S, Disoma C, Zheng R, Zhou M, Razzaq A, et al. SARS‐ CoV‐2: Mechanism of infection and emerging technologies for future prospects. Rev Med Virol [Internet]. 2020 [citado 2020 Oct]; 31(2): e2168. Disponible en: https://onlinelibrary.wiley. com/doi/10.1002/rmv.2168

18. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol [Internet]. 2020.(citado 2020 Dic) 6:1–14. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC7537588/

19. Wu C, Zheng M, Yang Y, Gu X, Yang K, Li M, et al. Furin: A Potential Therapeutic Target for COVID-19. iScience [Internet]. 2020 [citado 2020 Nov];23(10): 101642. Disponible en: https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC7534598/

20. Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun [Internet]. 2020 [citado 2020 Dic];11(1):1620. Disponible en: https://www.ncbi. nlm.nih.gov/pmc/articles/PMC7100515/

21. Shilts J, Crozier TWM, Greenwood EJD, Lehner PJ, Wright GJ. No evidence for basigin/CD147 as a direct SARS-CoV-2 spike binding receptor. Sci Rep. 2021;11:413.

22. Daly JL, Simonetti B, Klein K, Chen KE, Williamson MK, Antón-Plágaro C, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 2020; 370(6518):861-865.

23. Cantuti Castelvetri L, Ojha Ravi, Pedro LD, Djannatian M, Franz J, S Kuivanen, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020;370(6518):856-860.

24. Asghari A, Naseri M, Safari H, Saboory E, Parsamanesh N. The Novel Insight of SARS-CoV-2 Molecular Biology and Pathogenesis and Therapeutic Options. DNA Cell Biol. 2020;39 (10):1741-1753.

25. Díaz J. SARS-CoV-2 Molecular Network Structure. Front Physiol. 2020;11:870.

26. Van Damme W, Dahake R, van de Pas R, Vanham G, Assefa Y. COVID-19: Does the infectious inoculum dose-response relationship contribute to understanding heterogeneity in disease severity and transmission dynamics?. Med Hypotheses. 2021;146:110431.

27. Billah M.A, Miah M.M, Khan M.N. Reproductive number of coronavirus: A systematic review and meta-analysis based on global level evidence. PLoS ONE. 2020; 15(11): e0242128.

28. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med. 2020;172(9):577-582.

29. Cevik M, Kuppalli K, Kindrachuk J, Peiris M. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ. 2020; 371:m3862.

30. Loo YM, Gale M Jr. Immune signaling by RIG-I-like receptors. Immunity. 2011; 34(5):680-92.

31. Giovanni Franzo. The features of SARS-CoV-2 and other human coronavirus genomes could affect interferon production and immune response. Research Square [Internet]. 2020 [Citado en Noviembre de 2020]. Disponible en: https://doi.org/10.21203/ rs.3.rs-25640/v1.

32. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020; 181(5):1036-1045.e9.

33. Oliveira D, Medeiros N, Gomesa J. Immune response in COVID-19: What do we currently know? Author links open overlay panel. Microbial Pathogenesis. 2020; 148:104484.

34. Buszko M, Nita-Lazar A, Park J-H, Schwartzberg PL, Verthelyi D, Young HA, et al. Lessons learned: new insights on the role of cytokines in COVID-19. Nat Immunol. 2021;22(4):404–11.

35. Chen Z, John Wherry E. T cell responses in patients with COVID-19. Nat Rev Immunol. 2020; 20: 529–536.

36. Mathew D, Giles JR, Baxter AE, Oldridge D, Greenplate A, Wu J, et al. Deep immune profiling of COVID-19 patients reveals patient heterogeneity and distinct immunotypes with implications for therapeutic interventions. Science.2020; 369 (6508): 1-17.

37. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan J, Moderbacher C, et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020;181(7):1489-1501.

38. Sekine T, Perez-Potti A, Rivera-Ballesteros O, Stralin K, Gorin J, Olsson A, et al. Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19. Cell. 2020;183(1): 158-168.

39. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Tian DS. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020.; 71(15): 762-768.

40. Dan J.M, Mateus J, Kato Y, Hastine K.M, Yu E.D, Faliti C, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021; 371(6529): 1-15.

41. Wang X, Guo X, Xin Q, Pan Y, Hu Y, Li J, et a. Neutralizing Antibody Responses to Severe Acute Respiratory Syndrome Coronavirus 2 in Coronavirus Disease 2019 Inpatients and Convalescent Patients. Clin Infect Dis. 2020;71(10): 2688–2694.

42. Seow J, Graham C, Merrick B, Acors S, Pickering S, Steel K, et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat Microbiol. 2020; 5:1598–1607.

43. Gaebler C, Wang Z, Lorenzi J.C.C, Muecksch F, Finkin S, Tokuyama M, et al. Evolution of antibody immunity to SARS CoV-2. Nature. 2021; 591: 639-644.

44. Le Bert N, Tan A, Kunasegaran K, Tham C, Hafezi M, Chia A, et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls

45. Alcock J, Masters A. Cytokine storms, evolution and COVID-19. Evol Med Public Health. 2021;9(1):83–92.

46. Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020; (54):62-75.

47. Darif D, Hammi I, Kihel A, El Idrissi Saik I, Guessous F, Akarid K. The pro-inflammatory cytokines in COVID-19 pathogenesis: What goes wrong? Microb Pathog.2021;153:104799.

48. Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, et al. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell. 2021;184(1):149-168.

49. Fox SE, Akmatbekov A, Harbert JL, Li G, Brown JQ, Heide RSV. Pulmonary and cardiac pathology in Covid-19: the first autopsy series from New Orleans. Lancet. 2020; 8 (7): 681-6.

50. Levi M, Thachil J. Coronavirus Disease 2019 Coagulopathy: Disseminated Intravascular Coagulation and Thrombotic Microangiopathy-Either, Neither, or Both. Semin Thromb Hemost. 2020; 46(7):781-4

51. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019- nCoV infection. Front Med. 2020;14(2):185–92.

52. Ratajczak MZ, Kucia M. SARS-CoV-2 infection and overactivation of Nlrp3 inflammasome as a trigger of cytokine “storm” and risk factor for damage of hematopoietic stem cells. Leukemia. 2020; 34(7):1726-9.

53. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA. 2020; 25;324(8):782-93.

54. Schaller T, Hirschbühl K, Burkhardt K, Braun G, Trepel M, Märkl B, et al. Postmortem Examination of Patients With COVID-19. JAMA. 2020; 323(24): 2518–20.

55. Polak SB, Van Gool IC, Cohen D, Von der Thüsen JH, Van Paassen J. A systematic review of pathological findings in COVID-19: a pathophysiological timeline and possible mechanisms of disease progression. Mod Pathol. 2020; 33: 2128–38.

56. Dhont S, Derom E, Van Braeckel E, Depuydt P, Lambrecht BN. The pathophysiology of “happy” hypoxemia in COVID-19. Respir Res. 2020; 21(1):198.

57. Wei ZY, Geng YJ, Huang J, Qian HY. Pathogenesis and management of myocardial injury in coronavirus disease 2019. Eur J Heart Fail. 2020; 22(11):1994–2006.

58. DosSantos MF, Devalle S, Aran V, Capra D, Roque NR, Coelho-Aguiar J de M, et al. Neuromechanisms of SARS-CoV-2: A Review. Front Neuroanat. 2020;14:37.

59. Keyhanian K, Pizzolato R, Mohit B, Davoudi V, Hajighasemi F, Ghasemi M. SARS-CoV-2 and nervous system: From pathogenesis to clinical manifestation. J Neuroinmunol. 2020;350 :577436.

60. Belani P, Schefflein J, Kihira S, Rigney B, Delman BN, Mahmoudi K, et al. COVID-19 Is an independent risk factor for acute ischemic stroke. Am J Neuroradiol. 2020; 41(8):1361–4.

61. Bradley BT, Maioli H, Johnston R, Chaudhry I, Fink SL, Xu H, et al. Histopathology and Ultrastructural Findings of Fatal COVID-19 Infections. medRxiv. 2020;2020.04.17.20058545

62. Butowt R, von Bartheld CS. Anosmia in COVID-19: Underlying Mechanisms and Assessment of an Olfactory Route to Brain Infection. Neuroscientist. 2020; 85–94.

63. Tong JY, Wong A, Zhu D, Fastenberg JH, Tham T. The Prevalence of Olfactory and Gustatory Dysfunction in COVID-19 Patients: A Systematic Review and Meta-analysis. Otolaryngol - Head Neck Surg [Internet]. 2020 [Enero 2021];163(1):3–11. Disponible en: https://doi.org/10.1177%2F0194599820926473

64. Naicker S, Yang C-W, Hwang S-J, Liu B-C, Chen J-H, Jha V. The Novel Coronavirus 2019 epidemic and kidneys. Kidney Int [Internet]. 2020 [Enero 2021];97(5):824–8. Disponible en: https:// dx.doi.org/10.1016%2Fj.kint.2020.03.001

65. Araújo Duarte PM, Bastos Filho FAG, Duarte JVA, Duarte BA, Duarte IA, Lemes RPG, et al. Renal changes in COVID-19 infection. Rev Assoc Med Bras [Internet]. 2020 [Enero 2021] ;66(10):1335–7. Disponible en: http://dx.doi.org/10.1590/1806- 9282.66.10.1335

66. Abobaker A, Raba AA. Does COVID-19 affect male fertility? World J Urol [Internet]. 2020 [Enero 2021];1–2. Disponible en: https://doi.org/10.1007/s00345-020-03208-w

67. Dutta S, Sengupta P. SARS-CoV-2 and Male Infertility: Possible Multifaceted Pathology. Reprod Sci [Internet]. 2021 [Enero 2021];28(1):23–6. Disponible en: https://dx.doi. org/10.1007%2Fs43032-020-00261-z

68. Khalili MA, Leisegang K, Majzoub A, Finelli R, Selvam MKP, Henkel R, et al. Male fertility and the COVID-19 pandemic: Systematic review of the literature. World J Men’s Heal Infertil [Internet]. 2020 [Enero 2021] ;38(4):506–20. Disponible en: https://dx.doi.org/10.5534%2Fwjmh.200134

69. Huang C, Ji X, Zhou W, Huang Z, Peng X, Fan L, et al. Coronavirus: A Possible Cause of Reduced Male Fertility. Andrology. 2020; 9(1): 80-7.

70. Jing Y, Run-Qian L, Hao-Ran W, Hao-Ran C, Ya-Bin L, Yang G, et al. Potential influence of COVID-19/ACE2 on the female reproductive system. Mol Hum Reprod [Internet]. 2020 [Enero 2021];26(6):367–73. Disponible en: https://doi.org/10.1093/ molehr/gaaa030

71. Li R, Yin T, Fang F, Li Q, Chen J, Wang Y, et al. Potential risks of SARS-CoV-2 infection on reproductive health. Reprod Biomed Online [Internet]. 2020 [Enero 2021]; 41(1):89–95. https://doi. org/10.1016/j.rbmo.2020.04.018
Publicado
2021-09-28
Sección
Revisión de tema