Metaanálisis de asociación entre polimorfismos de nucleótido único y lesiones deportivas en fútbol
PDF

Palabras clave

fútbol
lesiones
polimorfismo genético
ACTN3
MMP
inhibidores tisulares de metaloproteinasas
VEFGA

Cómo citar

Molano Tobar, N. J., García Vallejo, F., & Montoya Villegas, J. C. (2021). Metaanálisis de asociación entre polimorfismos de nucleótido único y lesiones deportivas en fútbol. Médicas UIS, 34(3), 9–18. https://doi.org/10.18273/revmed.v34n3-2021001

Resumen

Introducción: la alta incidencia de lesiones deportivas en atletas de élite es una preocupación en medicina deportiva. Se puede lograr una visión amplia sobre las lesiones deportivas en Colombia y sobre su fisiopatología desde el ámbito de la genómica, la cual podría responder a numerosas lesiones deportivas a partir de la Identificación de polimorfismos de nucleótido único que conducen a discapacidades que afectan la salud de los deportistas y frecuentemente los distancian del campo de juego. Objetivo: determinar la asociación entre polimorfismos de nucleótido único en varios genes con lesiones deportivas en el fútbol. Materiales y métodos: se realizó búsqueda en las bases de datos PubMed, ScienceDirect y EBSCO de estudios publicados en los últimos 6 años hasta enero de 2020, incluyendo estudios en inglés y portugués, correspondientes a estudios clínicos de casos y controles, donde el grupo experimental fueran practicantes de fútbol y los controles fueran personas presumiblemente saludables. Se evaluó la calidad y el sesgo de los artículos finales mediante la escala de puntuación de Jadad o el sistema de puntuación de calidad de Oxford. A partir de los datos obtenidos se identificó la heterogeneidad con la prueba de I2 y el estadístico Q, para la estimación del efecto en los estudios de cohorte se utilizaron odds ratio y valor p <0.05, obteniendo los forest plot de cada gen. Resultados: 10 de los 1928 estudios fueron seleccionados, se encontró un grado de heterogeneidad en todos los estudios, como el riesgo de lesión de los polimorfismos de nucleótido único para ACNT3 (OR = 0,98; IC del 95 %: 0.64-1.50), MMP (OR = 1.16; IC del 95 %: 0.86-1.58, p = 0.33), TIMP2 (OR = 1,03; IC del 95 %: 0,65-1,63), VEFGA (OR = 0,98; IC del 95 %: 0,70-1,37). Conclusión: los estudios mostraron una heterogeneidad moderada con significancia estadística para los polimorfismos de nucleótido único de ACTN3 y TIM, lo que proporciona una vía para futuros estudios en relación con lesiones deportivas. MÉD.UIS.2021;34(3): 9-18.

https://doi.org/10.18273/revmed.v34n3-2021001
PDF

Referencias

Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, et al. Large-scale identification, mapping, and genotyping of singlenucleotide polymorphisms in the human genome. Science. 1998; 280(5366): 1077-82.

Molano-Tobar NJ, Molano-Tobar DX. Fútbol: identidad, pasión, dolor y lesión deportiva. Rev Mov. Cient [Internet]. 2015; 9(2): 23- 32. Available from: http://revistas.iberoamericana.edu.co/index.php/Rmcientifico/.

De Ste Croix M, Lehnert M, Maixnerova E, Zaatar A, Svoboda Z, Botek M, et al. Does maturation influence neuromuscular performance and muscle damage after competitive match-play in youth male soccer players? Eur J Sport Sci. 2019; 19(8): 1130-9.

Berengüí-gil R, Garcés EJ, Hidalgo-Montesinos MD. Características psicológicas asociadas a la incidencia de lesiones en deportistas de modalidades individuales. An Psicol. 2013; 29(3): 674-84.

Zaffagnini S, Grassi A, Muccioli GMM, Tsapralis K, Ricci M, Bragonzoni L, et al. Return to sport after anterior cruciate ligament reconstruction in professional soccer players. Knee [Internet]. 2014; 21(3): 731-5. Available from: http://dx.doi.org/10.1016/j.knee.2014.02.005.

Raya-González J, Nakamura FY, Castillo D, YancI J, Fanchini M. Determining the Relationship Between Internal Load Markers and Non-Contact Injuries in Young Elite Soccer Players. Int J Sports Physiol Perform. 2019; 14(4): 421-5.

Nilsson T, Östenberg AH, Alricsson M. Injury profile among elite male youth soccer players in a Swedish first league. J Exerc Rehabil. 2016; 12(2): 83-9.

Haugen T, Danielsen J, McGhie D, Sandbakk Ø, Ettema G. Kinematic stride cycle asymmetry is not associated with sprint performance and injury prevalence in athletic sprinters. Scand J Med Sci Sport. 2018; 28(3): 1001-8.

Widmann M, Nieß AM, Munz B. Physical Exercise and Epigenetic Modifications in Skeletal Muscle. Sport Med. 2019; 49(4): 509-23.

Camera DM, Smiles WJ, Hawley JA. Exercise-induced skeletal muscle signaling pathways and human athletic performance. Free Radic Biol Med. 2016; 98: 131-43.

Yoon J, Bae M, Kang H, Kim T. Descriptive epidemiology of sports injury and illness during the Rio 2016 Olympic Games: A prospective cohort study for Korean team. Int J Sport Sci Coach. 2018; 13(6): 939-46.

Leventera L, Eekb F, Lames M. Intra-seasonal variation of injury patterns among German Bundesliga soccer players. J Sci Med Sport. 2018;5(1):24-9.

Jayanthi NA, Labella CR, Fischer D, Pasulka J, Dugas LR. Sportsspecialized intensive training and the risk of injury in young athletes: A clinical case-control study. Am J Sports Med. 2015; 43(4): 794-801.

Larruskain JON, Celorrio D, Barrio I, Odriozola A, Gil SM, Fernandez-lopez JR, et al. Genetic Variants and Hamstring Injury in Soccer: An Association and Validation Study. Med Sci Sport Exerc. 2018; 361-8.

Pitsiladis YP, Tanaka M, Eynon N, Bouchard C, North KN, Williams AG, et al. Athlome project consortium: A concerted effort to discover genomic and other “omic” markers of athletic performance. Physiol Genomics. 2016; 48(3): 183-90.

Zhang Q, Cao Y, Chen J, Shen J, Ke D, Wang X, et al. ACTN3 is associated with children’s physical fitness in Han Chinese. Mol Genet Genomics. 2019; 294(1): 47-56.

Figueiredo EA, Loyola LC, Belangero PS, Campos Ribeiro-dos-Santos ÂK, Emanuel Batista Santos S, Cohen C, et al. Rotator Cuff Tear Susceptibility Is Associated With Variants in Genes Involved in Tendon Extracellular Matrix Homeostasis. J Orthop Res. 2020; 38(1): 192-201.

Brazier J, Antrobus M, Stebbings GK, Day SH, Heffernan SM, Cross MJ, et al. Tendon and Ligament Injuries in Elite Rugby: The Potential Genetic Influence. Sports. 2019; 7(6): 138.

Zeng X-T, Liu D-Y, Kwong JSW, Leng W-D, Xia L-Y, Mao M. Meta-Analysis of Association Between Interleukin-1β C-511T Polymorphism and Chronic Periodontitis Susceptibility. J Periodontol. 2015; 86(6): 812-9.

Pruna R, Artells R. Cómo puede afectar el componente genético la lesionabilidad de los deportistas. Apunt Med l’Esport. 2015; 50(186): 73-8.

Massidda M, Voisin S, Culigioni C, Piras F, Cugia P, Yan X, et al. ACTN3 R577X Polymorphism Is Associated with the Incidence and Severity of Injuries in Professional Football Players. Clin J Sport Med. 2019; 29(1): 57-61.

Moreno V, Areces F, Ruiz-Vicente D, Ordovás JM, Del Coso J. Influence of the ACTN3 R577X genotype on the injury epidemiology of marathon runners. PLoS One. 2020; 15(1): 1-11.

Delmonico MJ, Kostek MC, Doldo NA, Hand BD, Walsh S, Conway JM, et al. Alpha-actinin-3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women. J Gerontol Med Sci. 2007; 62(2): 206-12.

Orysiak J, Busko K, Michalski R, Mazur-Rózycka J, Gajewski J, Malczewska-Lenczowska J, et al. Relationship between ACTN3 R577x polymorphism and maximal power output in elite polish athletes. Med. 2014; 50(5): 303-8.

Rahim M, Collins M, September A. Genes and Musculoskeletal Soft-Tissue Injuries. Med Sport Sci. 2016; 61: 68-91.

Lambert M, Bastide B, Cieniewski-Bernard C. Involvement of O-GlcNAcylation in the skeletal muscle physiology and physiopathology: Focus on muscle metabolism. Front Endocrinol (Lausanne). 2018; 9: 1-12.

Urrutia G, Bonfill X. Declaracion PRISMA: una propuesta para mejorar la publicacion de revisiones sistematicas y metaanalisis. Med Clin (Barc). 2010; 135(11): 507-11.

Bassini A, Cameron LC. Sportomics: Building a new concept in metabolic studies and exercise science. Biochem Biophys Res Commun. 2014; 445(4): 708-16.

Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ. 2019; 366: 1-8.

Higgins JP, Green S. Manual Cochrane de revisiones sistemáticas de intervenciones. The Cochrane Collaboration. 2011.

Ruaro MB, Batista CV, Knaut SDAM, Dubiela A, Suckow PPT, Ruaro JA, et al. Uso da kinesio taping na dor lombar: revisão sistemática. ConScientiae Saúde. 2014; 13(1): 147-52.

Chen C, Sun Y, Liang H, Yu D, Hu S. A meta-analysis of the association of CKM gene rs8111989 polymorphism with sport performance. Biol Sport. 2017; 34(4): 323-30.

Sarzynski MA, Ghosh S, Bouchard C. Genomic and transcriptomic predictors of response levels to endurance exercise training. J Physiol. 2017; 595(9): 2931-9.

Bouchard C. Exercise genomics-A paradigm shift is needed: A commentary. Br J Sports Med. 2015; 49(23): 1492-6.

Sližik M, Pospieszna B, Gronek J, Sworek R. Are SNIP’s still desirable in sports genomics? Trends Sport Sci [Internet]. 2017; 24(1): 13-8. Disponible en: http://search.ebscohost.com/login.aspx?direct=true&db=s3h&AN=122301110&site=ehost-live.

Sparks LM. Exercise training response heterogeneity: physiological and molecular insights. Diabetologia. 2017; 60(12):2329-36.

Wang C, Li H, Chen K, Wu B, Liu H. Association of polymorphisms rs1800012 in COL1A1 with sports-related tendon and ligament injuries: A meta-analysis. Oncotarget. 2017; 8(16): 27627-34.

Morales-Artacho AJ, Lacourpaille L, Guilhem G. Effects of warmup on hamstring muscles stiffness: Cycling vs foam rolling. Scand J Med Sci Sport. 2017; 27(12): 1959-69.

Nyberg M, Fiorenza M, Lund A, Christensen M, RØmer T, Piil P, et al. Adaptations to speed endurance training in highly trained soccer players. Med Sci Sports Exerc. 2016; 48(7): 1355-64.

Miyamoto N, Miyamoto-Mikami E, Hirata K, Kimura N, Fuku N. Association analysis of the ACTN3 R577X polymorphism with passive muscle stiffness and muscle strain injury. Scand J Med Sci Sport. 2018; 28(3): 1209-14.

Bosnyák E, Trájer E, Udvardy A, Komka Z, Protzner A, Kováts T, et al. ACE and ACTN3 genes polymorphisms among female Hungarian athletes in the aspect of sport disciplines. Acta Physiol Hung. 2015; 102(4): 451-8.

Zietzer A, Buschmann EE, Janke D, Li L, Brix M, Meyborg H, et al. Acute physical exercise and long-term individual shear rate therapy increase telomerase activity in human peripheral blood mononuclear cells. Acta Physiol. 2017; 220(2): 251-62.

Fang M, Yang Y, Li X, Zhou F, Gao C, Li M, et al. The Association of Sport Performance with ACE and ACTN3 Genetic Polymorphisms: A Systematic Review and Meta-Analysis. PLoS One. 2013; 8(1): 1-9.

Gibbon A, Hobbs H, Van der Merwe W, Raleigh SM, Cook J, Handley CJ, et al. The MMP3 gene in musculoskeletal soft tissue injury risk profiling: A study in two independent sample groups. J Sports Sci. 2016; 35(1): 1-8.

Longo UG, Candela V, Berton A, Salvatore G, Guarnieri A, Deangelis J, et al. Genetic basis of rotator cuff injury: A systematic review. BMC Med Genet. 2019; 20(1): 1-6.

Lulinska-Kuklika E, Rahim M, Moska W, Maculewicz E, Kaczmarczyk M, Maciejewska-Skrendo A, et al. Are MMP3, MMP8 and TIMP2 gene variants associated with anterior cruciate ligament rupture susceptibility? J Sci Med Sport. 2019; 22(7): 753-7.

Thankam FG, Evan DK, Agrawal DK, Dilisio MF. Collagen type III content of the long head of the biceps tendon as an indicator of glenohumeral arthritis. Mol Cell Biochem. 2019; 454(1-2): 25-31.

Seale K, Burger M, Posthumus M, Hager C, Stattin E, Nilsson KG, et al. The apoptosis pathway and CASP8 variants conferring risk for acute and overuse musculoskeletal injuries. J Orthop Res. 2019; 38(3): 680-8.

Popovski ZT, Nestorovski T, Wick M, Tufekchievski A, Aceski A, Gjorgjievski S. Molecular-genetic predictions in selection of sport talents and ethical Aspect of Their Application. Res Phys Educ Sport Heal [Internet]. 2016; 5(1): 57-63. Disponible en: http://search.ebscohost.com/login.aspx?direct=true&db=s3h&AN=117704776&lang=pt-br&site=ehost-live.

Rahim M, El Khoury LY, Raleigh SM, Ribbans WJ, Posthumus M, Collins M, et al. Human Genetic Variation, Sport and Exercise Medicine, and Achilles Tendinopathy: Role for Angiogenesis- Associated Genes. Omi A J Integr Biol. 2016; 20(9): 520-7.

Kang X, Tian B, Zhang L, Ge Z, Zhao Y, Zhang Y. Relationship of common variants in MPP7, TIMP2 and CASP8 genes with the risk of chronic achilles tendinopathy. Sci Rep [Internet]. 2019; 9: 1-6. Disponible en: https://doi.org/10.1038/s41598-019-54097-y.

El Khoury LY, Rickaby R, Samiric T, Raleigh SM. Promoter methylation status of the TIMP2 and ADAMTS4 genes and patellar tendinopathy. J Sci Med Sport. 2018; 21(4): 378-82.

Lulińska-Kuklik E, Leźnicka K, Humińska-Lisowska K, Moska W, Michałowska-Sawczyn M, Ossowski Z, et al. The VEGFA gene and anterior cruciate ligament rupture risk in the Caucasian population. Biol Sport. 2019; 36(1): 3-8.

Silva RRV, Guimarães ALS, Neto JFR, Silveira MF, de Paula AMB, Pena G das G, et al. Genetic variation in the promoter region of the TNF rs1800629 gene is not associated with adiposity index, but AA genotype is more likely to have low cellular membrane integrity. Meta Gene. 2017; 13: 85-91.

Raleigh SM. Epigenetic regulation of the ACE gene might be more relevant to endurance physiology than the I/D polymorphism. J Appl Physiol. 2012; 112(6): 1082-3.

Fernandez E, Alvarez M, Podhajcer Os, Stolovitzky G. Genomica Funcional: En Busca De La Funcion De Los Genes. Actas La Acad Nac Cienc Repúb. Argent. 2015; 218(13).

Pitsiladis Y, Wang G, Wolfarth B, Scott R, Fuku N, Mikami E, et al. Genomics of elite sporting performance: What little we know and necessary advances. Br J Sports Med. 2013; 47(9): 550-5.

Ministerio de Salud y Protección Social Colombia. Resolución 8430. Colombia; 1993. Pp. 1-12.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2021 Médicas UIS

Descargas

Los datos de descargas todavía no están disponibles.