Resumen
Este artículo hace una revisión narrativa de la literatura científica de investigaciones relacionadas con materiales obtenidos de fuentes naturales para uso biomédico, aplicaciones en prótesis ortopédicas o regeneración ósea. Se describe la metodología para la selección de la literatura científica, así como la síntesis de los materiales naturales, detallando las principales características que estos deben cumplir en cuanto a la reactividad con el tejido biológico y la biocompatibilidad. La biocompatibilidad de un material depende de su composición, sus características superficiales y de su respuesta favorable ante la reactividad con el tejido biológico. Esta propiedad en los materiales naturales se estudia desde el punto de vista de la composición de los mismos, que por ser naturales los pueden convertir en materiales biomiméticos, que cumplen con funciones y características necesarias para ser usados como potenciales biomateriales. Los materiales comúnmente usados en ortopedia y regeneración ósea son de alto costo y muchas veces de difícil acceso para los pacientes. (MÉD.UIS. 2014;27(1):35-41).
Referencias
2. Lárez C. Quitina y quitosano: materiales del pasado para el presente y el futuro. Avances en Química. 2006;1(2):15-21.
3. Infante P, Gutiérrez J, Torres D, García A, Gonzales J. Relleno de cavidades óseas en cirugía maxilofacial con materiales autólogos.Rev Esp Cirug Oral y Maxilofac.2007;29(1):7-19.
4. Guevara C, Romero G, Calle M, Delgado E. Desarrollo de una biocerámica biomimética para uso específico en odontología. Rev Acad Colomb Cienc. 2006;30(117):595-604.
5. Hunton P. Research on eggshell structure and quality: an historical overview. Rev Bras Cienc Avic. 2005;7(2):67-71.
6. Acevedo J, López J, Vargas G, Rendón J, Méndez J. Chemical synthesis of bone-like carbonate hydroxyapatite from hen eggshells and its characterization. Bol Soc Esp Ceram. 2007;46(5):225-31.
7. Xiong L, Saito K, Sekiya E, Sujaridworakun P, WADA S. Influence of impurity ions on rice husk combustion. Journal of metals, materials and minerals. 2009;19(2):73-7.
8. Forero A, Medrano L, Díaz S. Obtención de silicio metalúrgico a partir de mezclas de ceniza de cascarilla de arroz y arena silicea. Rev. LatinAm. Metal. Mat. 2009; 3 Suppl S1: 1349-52.
9. Prakash J. Preparation and Characterization of Bioactive Silica-based Ceramics derived from Rice Husk Ash [tesis doctoral]. Rourkela (India): National institute of technology; 2010.
10. Chandrasekhar S, Satyanarayana K, Pramada P, Raghavan P, Gupta T. Proccesing, properties and applications of reactive silica from rice husk – an overview. Journal Mat. Sci. 2003; 38(15):3159-68.
11. Prasad R, Pandey M. Rice husk ash as a renewable source for the production of value added silica gel and its application: an overview. Bulletin of chemical reaction engineering & catalysis. 2012;7(1):1-25.
12. Kumar A, Mohanta K, Kumar D, Parkash O. Properties and Industrial Applications of Rice husk: A review. IJETAE. 2012;2(10):86-90.
13. Farook A, Chew T, Syahidasalwa Y. Bio-template Synthesis of Silica-Ruthenium Catalyst for Benzylation of Toluene. J PHYS THER SCI. 2003;24(1):29-35.
14. Espindola A, Estevez M, Martinez A, Castaño V, Velazco C. Obtención y caracterización microestructural de nanoparticulas de SiO2 a partir de cascarilla de arroz, pulpa de café y bagazo de caña empleando bioprocesos a base de anélidos. Centro de física aplicada y tecnología avanzada UNAM Campus Juriquilla Queretano México [cited 2012 Dic 18]. Available from: URL: http://www.amemi.org/Docs/simposia_materiales/carteles/101_Obtenci%C3%B3n_y_caracterizaci%C3%B3n.pdf
15. Dessai R, Desaa J, Senb D, Mazumder S. Effects of pressure and temperature on pore structure of ceramic synthesized from rice husk: A small angle neutron scattering investigation. Journal of Alloys and Compounds. 2013;564:125-29.
16. Prawingwong P, Chaiya C,Reubroycharoen P, Samart C. Utilization of Rice Husk Ash Silica in Controlled Releasing Application. Journal of Metals, Materials and Minerals. 2009;19(2):61-5.
17. Born R, Ehrlich H, Bazhenov V, Shapkin N. Investigation of nanoorganized biomaterials of marine origin. Arabian Journal of Chemistry. 2010;3:27-32.
18. Volpi N. Adsorption of glycosaminoglycans onto coral – a new possible implant biomaterials for regeneration therapy. Biomaterials. 1999;20:1359-63.
19. Kubisz L, Ehrlich H. Temperature dependence of electric conductivity of bamboo coral skeleton and glass sponge spicules, the marine origin biomaterials. Journal of Non-Crystalline Solids. 2007;353:4497–500.
20. Soria J, Barcia J, Andrades J, Romero J, Monleón M, García J. Uso de biomateriales en medicina regenerativa, aspectos básicos y aplicaciones en el Sistema Nervioso. Trauma. 2008;20(1):15-22.
21. Hamza S, Slimanea N, Azarib, Z, Pluvinageb G. Structural and mechanical properties of the coral and nacre and the potentiality of their use as bone substitutes. Applied Surface Science. 2013;264:485-91.
22. Begley C, Doherty M, Mollan R, Wilson D. Comparative study of the osteoinductive properties of bioceramic, coral and processed bone graft substitutes. Biomaterials. 1995; 16: 1181-85.
23. Guangpeng L, Yun Z, Bo L, Jian S, Wuyin L, Lei C. Bone regeneration in a canine cranial model using allogeneic adipose derived stem cells and coral scaffold. Biomaterials. 2013; 34: 2655-64.
24. Dong Q, Shang H, Wu W, Chen F, Zhang J, Guo J, Mao T. Prefabrication of axial vascularized tissue engineering coral bone by an arteriovenous loop: A better model. Materials Science and Engineering. 2012; 32:1536-41.
25. Gross T, DiCarlo B, French M, Athanasiou K, Vago R. A study of crystalline biomaterials for articular cartilage bioengineering. Materials Science and Engineering. 2008; 28: 1388-400.
26. Zhang Y, Wang Y, Shi B, Cheng X. A platelet-derived growth factor releasing chitosan/coral composite scaffold for periodontal tissue engineering. Biomaterials. 2007; 28: 1515-22.
27. Braye F, Irigaray J, Jallot E, Oudadesse H, Weber G, Deschamps N, et al. Resorption kinetics of osseous substitute: natural coral and synthetic J hydroxyapatite. Biomaterials. 1996;17(13):1345-50.
28. Sivakumar M, Kumar TS, Shantha KL, Rao KP. Development of hydroxyapatite derived from Indian coral. Biomaterials. 1996;17(17):1709-14.
29. Chou J, Hao J, Ben-Nissan B, Milthorpe B, Otsuka M. Coral Exoskeletons as a Precursor Material for the Development of a CalciumPhosphate Drug Delivery System for Bone Tissue Engineering. Biol. Pharm. Bull. 2013;36(11) :1662-65.
30. Gao Z, Chen F, Zhang J, He L, Cheng X, Ma Q, et al. Vitalisation of tubular coral scaffolds with cell sheets for regeneration of long bones: a preliminary study in nude mice. Br J Oral Maxillofac Surg. 2009; 47(2):116-22.
31. Navas E. Aplicaciones estructurales de la guadua (Guadua angustifolia kunth). Proyecto de estructura modular multifuncional en Colombia [tesis de grado]. Madrid (España): Politécnica de España Univ.; 2011.
32. Osorio JA, Espinosa A, García EA. Evaluación de las propiedades mecánicas de la estructura interna de la guadua con un modelo matemático. Dyna. 2009;160:169-78.
33. Montañez N, Solares L, Caserta G. Diseño de un prototipo de hueso humano y propiedades mecánicas de un biocerámico a partir de ramas de guadua [tesis de grado]. Bucaramanga (Colombia): Manuela Beltrán Univ.; 2013.
34. Nordin M, Frankel VH. Biomechanics of bone. In: Lippincott Williams & Wilkins editors: Basic biomechanics of the musculoskeletal system. 3nd ed. Estados Unidos; 2001. p. 35-58.
35. Subit D, Del Pozo E, Valazquez-Ameijide J, Arregui-Dalmases C, Crandall J. Tensile material properties of human rib cortical bone under quasi-static and dynamic failure loading and influence of the bone microstucture on failure characteristics. Physics.bio-ph. 2013:1-22.
36. Li Z, Kindig MW, Subit D, Kent Rw. Influence of mesh density, cortical thickness and material properties on human rib fracture prediction. Med Eng Phys. 2010;32(9):998-1008.
37. Li Z, Kindig MW, Kerrigan JR, Untaroiu CD, Subit D, Crandall JR, et al. Rib fractures under anterior–posterior dynamic loads: experimental and finite-element study. J Biomech. 2010;43(2):228-34.
38. Vezin P, Berthet F. Structural characterization of human rib cage behavior under dynamic loading. Stapp Car Crash J. 2009;53:93-125.
39. Quintero S, González L. Uso de fibra de estopa de coco para mejorar las propiedades mecánicas del concreto. Ingeniería y Desarrollo. 2006;20:134-50.
40. Prakash T. Processing and characterization of natural fiber reinforced polymer composites. Rourkela (India): National institute of technology; 2009.
41. Fernandes E, Correlo V, Mano J, Reis R. Novel cork–polymer composites reinforced with short natural coconut fibres: Effect of fibre loading and coupling agent addition. Compos. Sci. Technol. 2013;78:56-62.
42. Chandramohan D, Marimuthu K. A review on natural fibers. IJRRAS. 2011;8(2):194-206.
43. Bujang I, Awang M, Ismail A. Study on the dynamic characteristic of coconut fibre reinforced composites. Regional Conference on Engineering Mathematics, Mechanics, Manufacturing & Architecture; 2007. Malaysia.
44. Conde S. Estudio de la fibra de coco con resina poliéster para la manufactura de palas de aerogeneradores de pequeña potencia. Santo Domingo Tehuantepec (México): Istmo Oaxaca Univ.; 2010.
45. Evans R, Konduru S, Stamps R. Source Variation in Physical and Chemical Properties of Coconut Coir Dust. Hortscience. 1996;31(6):965-67.
46. Vargas P, Castellanos JZ, Sánchez P, Tijerina L, López RM, Ojodeagua JL. Caracterización física, química y biológica de sustratos de polvo de coco. Rev. Fitotec. Mex. 2008;31(4):375-81.
47. Pardavé W, Rojas M, Camelo K. Biocompatibilidad del prototipo de hueso humero humano obtenido a partir de cáscara de coco. Rev Univ Ind Santander Salud. 2011;43(1):86.
48. Chandramohan D, Marimuthu K. Bio composite materials based on bio polymers and natural fibers- contribution as bone implants. IJAMSAR. 2011; 1(1):09-12.
49. Saldarriaga J, Zuluaga R, Álvarez C, Gañán P. Caracterización de polisácaridos naturales obtenidos a partir de fuentes colombianas. Revista Investigaciones Aplicadas. 2007;1(2):6-12.
50. Salazar M. Evaluación de pinturas arquitectónicas de tipo látex con fibras naturales de tagua y cabuya [tesis de grado]. Guayaquil (Ecuador): Escuela superior politécnica del litoral; 2006.
51. Pardavé W, Plazas A, Torres RD. Desarrollo de un prototipo del hueso humano a partir de tagua vegetal. Ensayos de biocompatibilidad in vitro. Revista del Instituto de Investigaciones de la Facultad de Geología, Minas, Metal. 2011;14(28):1-7.