Biomecánica del cartílago articular y sus respuestas ante la aplicación de las fuerzas

  • Diego Fabricio Rodríguez-Camacho Universidad Nacional de Colombia
  • Juan Felipe Correa-Mesa Universidad Nacional de Colombia

Resumen

Introducción: el cartílago es un tejido conectivo especializado ampliamente estudiado por sus componentes mecánicos y su aporte para
el funcionamiento articular. El entendimiento de su rol requiere necesariamente del abordaje del comportamiento biomecánico. Objetivo:
realizar una revisión de literatura acerca de la biomecánica del cartílago articular y sus respuestas a las fuerzas aplicadas. Materiales y Métodos:
se realizó una búsqueda bibliográfica en las bases de datos Pubmed, Scielo, Science Direct y Google académico de artículos publicados
entre los años 1998 y 2017, con los términos: “Cartilage Biomechanic”, “Cartilage Fisiology”, y “Cartilage Histology”. Se encontraron 55
artículos, 44 en idioma inglés y 11 en idioma español, los cuales contenían información relevante a cerca de la biomecánica del cartílago
articular. Resultados: en este artículo se resume un conjunto de conceptos derivados de estudios experimentales y otras revisiones de tema, abordando actualizaciones en cuanto a la histología, la fisiología y las diferentes respuestas mecánicas ante distintos estímulos como lo son la anisotropía, la viscoelasticidad la histéresis, fluencia, entre otros. Conclusiones: el cartílago articular es un tejido conectivo trifásico que permite el soporte y transmisión de cargas gracias a la mecanotransducción. El abordaje y comprensión de la biomecánica de los tejidos se hace necesaria para la prescripción del ejercicio en condiciones aparentemente normales y patológicas. MÉD.UIS. 2018;31(3):47-56.

Palabras clave: Histología, Cartílago, Módulo de Elasticidad, Condrocito, Fenómenos Biomecánicos

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor

Diego Fabricio Rodríguez-Camacho, Universidad Nacional de Colombia

Fisioterapeuta. Magister en Fisioterapia del Deporte y la Actividad Física. Universidad Nacional de Colombia. Docente programa de FisioterapiaFisioterapeuta. Magister en Fisioterapia del Deporte y la Actividad Física. Universidad Nacional de Colombia. Docente programa de FisioterapiaUniversidad de La Sabana. Grupo de investigación Movimiento Corporal Humano. Programa de Fisioterapia. Universidad de La Sabana. Chía.Cundinamarca. Colombia.

Juan Felipe Correa-Mesa, Universidad Nacional de Colombia

Fisioterapeuta. Magister en Fisioterapia del Deporte y la Actividad Física. Grupo de Análisis Mecánico y Neuromecánico del Movimiento Corporal. Departamento Movimiento Corporal. Universidad Nacional de Colombia. Bogotá. Cundinamarca. Colombia

Citas

1. Bhattaram P, Chandrasekharan U. The joint synovium: A critical determinant of articular cartilage fate in inflammatory jointdiseases. Semin Cell Dev Biol. 2017;62:86-92

2. López-Vaca O, Narváez-Tovar C, Garzón-Alvarado D. Modeloscomputacionales del comportamiento del cartílago articular. Rev Cubana Invest Bioméd. 2012;31(3):373-85.

3. Illustration Toolkit - Biology [Internet]. [citado 21 de mayo de 2018]. Disponible en: ttp://www.motifolio.com/biology.html.

4. Chevalier X. Fisiopatología de la artrosis. EMC-Apar Locomot.2009;42(1):1-11.

5. Malfait AM. Osteoarthritis year in review 2015: biology.
Osteoarthritis Cartilage. 2016;24(1):21-6.
6. Schmidt MB, Chen EH, Lynch SE. A review of the effects of
insulin-like growth factor and platelet derived growth factor
on in vivo cartilage healing and repair. Osteoarthritis Cartilage.
2006;14(5):403-12.
7. Cooper C, Javaid MK, Arden N. Epidemiology of osteoarthritis.
En: Atlas of Osteoarthritis [Internet]. Tarporley: Springer
Healthcare Ltd.; 2014. p. 21-36. Disponible en: http://link.
springer.com/10.1007/978-1-910315-16-3_2.
8. Cerit B. Determination and Evaluation of the Needs of the
Patients with Knee Osteoarthritis in their Daily Living Activities.
Procedia - Soc Behav Sci. 2014; 152:841-4.
9. Neogi T, Zhang Y. Epidemiology of OA. Rheum Dis Clin North
Am. 2013;39(1):1-19.
10. Puig-Junoy J, Ruiz Zamora A. Socio-economic costs of
osteoarthritis: A systematic review of cost-of-illness studies.
Semin Arthritis Rheum. 2015;44(5):531-41.
11. Litwic A, Edwards MH, Dennison EM, Cooper C. Epidemiology
and burden of osteoarthritis. Br Med Bull. 2013;105(1):185-99.
12. Srikanth VK, Fryer JL, Zhai G, Winzenberg TM, Hosmer D, Jones
G. A meta-analysis of sex differences prevalence, incidence and
severity of osteoarthritis. Osteoarthritis Cartilage. 2005;13(9):769-
81.
13. Shane Anderson A, Loeser RF. Why is osteoarthritis an agerelated
disease? Best Pract Res Clin Rheumatol. 2010;24(1):15-26.
14. Yang X, Zhao J, He Y, Huangfu X. Screening for characteristic
genes in osteoarthritis induced by destabilization of the medial
meniscus utilizing bioinformatics approach. J Musculoskelet
Neuronal Interact. 2014;14(3):343-8.
15. Männicke N, Schöne M, Oelze M, Raum K. Articular cartilage
degeneration classification by means of high-frequency
ultrasound. Osteoarthritis Cartilage. 2014;22(10):1577-82.
16. Hunziker EB, Lippuner K, Keel MJB, Shintani N. An educational
review of cartilage repair: precepts & practice - myths &
misconceptions - progress & prospects. Osteoarthritis Cartilage.
2015;23(3):334-50.
17. Umlauf D, Frank S, Pap T, Bertrand J. Cartilage biology, pathology,
and repair. Cell Mol Life Sci. 2010;67(24):4197-211.
18. Nordin M, Anzures MBJ, Frankel VH, Sánchez F. Bases
biomecánicas del sistema musculoesquelético. 4ª ed. Madrid,
España: Lippincott Williams & Wilkins; 2012.
19. Forriol F. El cartílago articular: aspectos mecánicos y su
repercusión en la reparación tisular. Rev Esp Cir Ortop Traumatol.
2002;46(5):380-90.
20. Shapiro F, Forriol F. El cartílago de crecimiento: biología
y biomecánica del desarrollo. Rev Esp Cir Ortop
Traumatol.2005;49(1):55-67.
21. Mobasheri A, Kalamegam G, Musumeci G, Batt ME. Chondrocyte
and mesenchymal stem cell-based therapies for cartilage repair
in osteoarthritis and related orthopaedic conditions. Maturitas.
2014;78(3):188-98.
22. Wen CY, Wu CB, Tang B, Wang T, Yan CH, Lu WW, et al.
Collagen fibril stiffening in osteoarthritic cartilage of human
beings revealed by atomic force microscopy. Osteoarthr Cartil.
2012;20(8):916-22.
23. Miralles RC, Miralles I. Biomecánica clínica de las patologías del
aparato locomotor. Barcelona: Masson; 2007.
24. Zapata NM, Zuluaga NJ, Betancur SN, López LE. Cultivo de tegido
cartilaginoso: acercamiento conceptual. EIA. 2007;4(8):117-9.
25. Ng L, Grodzinsky AJ, Patwari P, Sandy J, Plaas A, Ortiz C.
Individual cartilage aggrecan macromolecules and their
constituent glycosaminoglycans visualized via atomic force
microscopy. J Struct Biol. 2003;143(3):242-57.
26. Nordin M, Frankel VH. Bases biomecánicas del sistema
musculoesquelético. 4th ed. Philadelphia: Lippincott Williams
& Wilkins; 2013.
27. Quintero M, Monfort J, Mitrovic DR. Osteoartrosis: biología,
fisiopatología, clínica y tratamiento. 1ª ed. Madrid: Editorial
Médica Panamericana; 2009.
28. Ricard F. Tratamiento osteopático de las algias de origen
cervical: cervicalgias, hernias discales, tortícolis, neuralgias
cervicobraquiales, cefalas, migrañas, vértigos. 1ª ed. Madrid:
Editorial Médica Panamericana; 2008.
29. Struglics A, Larsson S. A comparison of different purification
methods of aggrecan fragments from human articular cartilage
and synovial fluid. Matrix Biol. 2010;29(1):74-83.
30. Pescador-Hernandez D. Ingeniería tisular para el tratamiento
de las lesiones osteocondrales. Ediciones Universidad de
Salamanca. España. 2012.
31. Gao L-L, Zhang C-Q, Gao H, Liu Z-D, Xiao P-P. Depth and
rate dependent mechanical behaviors for articular cartilage:
experiments and theoretical predictions. Mater Sci Eng C.
2014;38:244-51.
32. Accardi MA, Dini D, Cann PM. Experimental and numerical
investigation of the behaviour of articular cartilage under
shear loading—Interstitial fluid pressurisation and lubrication
mechanisms. Tribol Int. 2011;44(5):565-78.
33. Caligaris M, Ateshian GA. Effects of sustained interstitial fluid
pressurization under migrating contact area, and boundary
lubrication by synovial fluid, on cartilage friction. Osteoarthritis
Cartilage. 2008;16(10):1220-7.
34. Chan SMT, Neu CP, DuRaine G, Komvopoulos K, Reddi
AH. Tribological altruism: A sacrificial layer mechanism of synovial joint lubrication in articular cartilage. J Biomech. 2012;45(14):2426-31.

35. Qian S, Ge S, Zhang H. Investigation of Contact and Friction
Behavior of Natural Cartilage by Glass Slope Configuration. Phys
Procedia. 2012;33:85-95.
36. Waters NP, Stoker AM, Carson WL, Pfeiffer FM, Cook JL.
Biomarkers affected by impact velocity and maximum strain of
cartilage during injury. J Biomech. 2014;47(12):3185-95.
37. Gu WY, Yao H, Huang CY, Cheung HS. New insight into
deformation-dependent hydraulic permeability of gels and
cartilage, and dynamic behavior of agarose gels in confined
compression. J Biomech. 2003;36(4):593-8.
38. Baykal D, Underwood RJ, Mansmann K, Marcolongo M, Kurtz SM.
Evaluation of friction properties of hydrogels based on a biphasic
cartilage model. J Mech Behav Biomed Mater. 2013;28:263-73.
39. Hamann N, Zaucke F, Dayakli M, Brüggemann G-P, Niehoff
A. Growth-related structural, biochemical, and mechanical
properties of the functional bone-cartilage unit. J Anat.
2013;222(2):248-59.
40. Halász K, Kassner A, Mörgelin M, Heinegård D. COMP
acts as a catalyst in collagen fibrillogenesis. J Biol Chem.
2007;282(43):31166-73.
41. Niehoff A, Müller M, Brüggemann L, Savage T, Zaucke F, Eckstein
F, et al. Deformational behaviour of knee cartilage and changes in
serum cartilage oligomeric matrix protein (COMP) after running
and drop landing. Osteoarthritis Cartilage . 2011;19(8):1003-10.
42. López-Vaca OR, Narváez-Tovar CA, Garzón-Alvarado DA.
Modelos computacionales del comportamiento del cartílago
articular. Rev Cubana Invest Bioméd. 2012; 31(3): 373-385.
43. E.Trujillo Martin. Canales de agua e iones en el cartílago articular.
Rev Esp Reumatol. 2005;32(1):1-47
44. Orr AW, Helmke BP, Blackman BR, Schwartz MA. Mechanisms of
Mechanotransduction. Dev Cell. 2006;10(1):11-20.
45. Chen CS, Tan J, Tien J. Mechanotransduction at cell-matrix and
cell-cell contacts. Annu Rev Biomed Eng. 2004;6(1):275-302.
46. Ingber DE, Wang N, Stamenović D. Tensegrity, cellular
biophysics, and the mechanics of living systems. Rep Prog Phys.
2014;77(4):046603.
47. Guo H, Maher SA, Torzilli PA. A biphasic multiscale study of
the mechanical microenvironment of chondrocytes within
articular cartilage under unconfined compression. J Biomech.
2014;47(11):2721-9.
48. Madej W, van Caam A, Blaney Davidson EN, van der Kraan PM,
Buma P. Physiological and excessive mechanical compression of
articular cartilage activates Smad2/3P signaling. Osteoarthritis
Cartilage. 2014;22(7):1018-25.
49. Wilusz RE, DeFrate LE, Guilak F. A biomechanical role for
perlecan in the pericellular matrix of articular cartilage. Matrix
Biol. 2012;31(6):320-7.
50. Latif MJA, Hashim NH, Ramlan R, Mahmud J, Jumahat A, Kadir
MRA. The Effects of Surface Curvature on Cartilage Behaviour
in Indentation Test: A Finite Element Study. Procedia Eng.
2013;68:109-15.
51. Szafranski JD, Grodzinsky AJ, Burger E, Gaschen V, Hung H-H,
Hunziker EB. Chondrocyte mechanotransduction: effects of
compression on deformation of intracellular organelles and
relevance to cellular biosynthesis. Osteoarthr Cartil OARS
Osteoarthr Res Soc. 2004;12(12):937-46.
52. Revista Cubana de Investigaciones Biomédicas - Una
introducción a la mecanobiología computacional [Internet].
[citado 21 de marzo de 2015]. Disponible en: http://scielo.sld.cu/
scielo.php?pid=S0864-03002011000300008&script=sci_arttext
53. Tan K, Lawler J. The interaction of Thrombospondins with
extracellular matrix proteins. J Cell Commun Signal. 2009;3(3-
4):177-87.
54. Han S-K, Madden R, Abusara Z, Herzog W. In situ chondrocyte
viscoelasticity. J Biomech. 2012;45(14):2450-6.
55. De Visser SK, Bowden JC, Wentrup-Byrne E, Rintoul L, Bostrom
T, Pope JM, et al. Anisotropy of collagen fibre alignment in bovine
cartilage: comparison of polarised light microscopy and spatially
resolved diffusion-tensor measurements. Osteoarthr Cartil OARS
Osteoarthr Res Soc. 2008;16(6):689-97.
56. Xia Y. Averaged and depth-dependent anisotropy of articular
cartilage by microscopic imaging. Semin Arthritis Rheum.
2008;37(5):317-27.
57. Yin J-H, Xia Y, Ramakrishnan N. Depth-dependent anisotropy of
proteoglycan in articular cartilage by Fourier transform infrared
imaging. Vib Spectrosc. 2011;57(2):338-41.
58. Lange JR, Fabry B. Cell and tissue mechanics in cell migration.
Exp Cell Res. 2013;319(16):2418-23.
59. García JJ, Cortés DH. A biphasic viscohyperelastic fibril-reinforced
model for articular cartilage: formulation and comparison with
experimental data. J Biomech. 2007;40(8):1737-44.
60. García JJ, Cortés DH. A nonlinear biphasic viscohyperelastic
model for articular cartilage. J Biomech. 2006;39(16):2991-8.
61. Han S-K, Madden R, Abusara Z, Herzog W. In situ chondrocyte
viscoelasticity. J Biomech. 2012;45(14):2450-6.
62. June RK, Fyhrie DP. A comparison of cartilage stress-relaxation
models in unconfined compression: QLV and stretched
exponential in combination with fluid flow. Comput Methods
Biomech Biomed Engin. 2013;16(5):565-76.
63. Bian L, Kaplun M, Williams DY, Xu D, Ateshian GA, Hung CT.
Influence of chondroitin sulfate on the biochemical, mechanical
and frictional properties of cartilage explants in long-term
culture. J Biomech. 2009;42(3):286-90.
64. Guede D, González P, Caeiro JR. Biomecánica y hueso (I):
Conceptos básicos y ensayos mecánicos clásicos. Rev Osteoporos
Metab Miner. 2013;5(1):43-50.
65. Gao L-L, Zhang C-Q, Gao H, Liu Z-D, Xiao P-P. Depth and
rate dependent mechanical behaviors for articular cartilage:
Experiments and theoretical predictions. Mater Sci Eng C.
2014;38:244-51.
66. Landínez NS, Vanegas JC, Garzón DA. Regulación molecular
del cartílago articular en función de las cargas mecánicas y el
proceso osteoartrósico: una revisión teórica. Rev Cubana ortop
Traumatol. 2008;22(2).
67. Abdel-Sayed P, Moghadam MN, Salomir R, Tchernin D, Pioletti
DP. Intrinsic viscoelasticity increases temperature in knee
cartilage under physiological loading. J Mech Behav Biomed
Mater. 2014;30:123-30.
68. Chaitow L, DeLany J. Aplicación clínica de las técnicas
neuromusculares. Badalona: Editorial Paidotribo; 2007.
69. Walter C, Leichtle U, Lorenz A, Mittag F, Wulker N, Muller O, et
al. Dissipated energy as a method to characterize the cartilage
damage in large animal joints: An in vitro testing model. Med Eng
Phys. 2013;35(9):1251-5.
70. Park S, Hung CT, Ateshian GA. Mechanical response of bovine
articular cartilage under dynamic unconfined compression
loading at physiological stress levels. Osteoarthritis and
Cartilage. 2004;12(1):65-73.
Publicado
2018-09-24
Sección
Revisión de tema