Abstract
Introduction: aging is characterized by physiological changes, including increased oxidative stress (OS), which is a risk factor for the development of multiple pathologies. Physical activity in daily life (PADL) is a protective factor for health and could be associated with a decrease in oxidative stress. Objective: to analyze the correlation of PADL and blood biomarkers of OS in older adults. Materials and Method: 35 older adults were included (age: 69 ± 7 years, men: 57%). PADL was objectively evaluated using the DynaPort triaxial accelerometer, which measured the time in 6 different activities: Fast walking, lying, sitting, standing, moving and slow walking, respectively. The following biomarkers from peripheral blood were measured: advanced protein oxidation products (AOPP), nitric oxide (NOx), total antioxidant potential (TRAP), sulfhydryl group (SH) and superoxide enzyme dismutase (SOD). Blood glucose level, BMI and abdominal girth also were considered. The Pearson or Spearman correlation coefficients were used respectively, with p < 0.05 and 95% CI. Results: SOD had a correlation with fast walking (r = 0.6) and moving time (r = 0.6). AOPP had a correlation with fast walking (r = -0.4), slow walking (r = -0.5), standing (r = -0.4), moving (r = -0.4) and the lying time (r = 0.5). BMI had a correlation with moving time (r = -0.4). Glucose had a correlation with fast walking (-r = 0.63), standing (r = -0.5), moving (r = -0.6), slow walking (r = -0.61) and lying time (r = 0.54). Conclusions: increased levels of physical activity in daily life are significantly associated with greater antioxidant capacity, lower oxidative stress, glucose and BMI. MÉD.UIS.2020;33(1): 13-9.
References
2. Barja G. Relación entre el estrés oxidativo mitocondrial y la velocidad del envejecimiento. Rev Esp Geriatr Gerontol. 2005;40(4):243-249.
3. Kregel KC, Zhang HJ. An integrated view of oxidative stress in aging : basic mechanisms , functional effects , and pathological considerations. Am J Physiol Regul Integr Comp Physiol 292.
2007;292:18-36. doi:10.1152/ajpregu.00327.2006.
4. Najua Juma Ismail Esh ShamiI; Emília Addison Machado Moreira. Licopeno como agente antioxidante. Rev Nutr. 2004;17:227-236.
5. Ferreira A.L.A.; Matsubara LS. Radicais livres: conceitos, doenças relacionadas, sistema de defesa e estresse oxidativo. Rev Assoc Med Bras. 1997:61-68. doi:10.1590
6. Rumora L, Rajković MG, Kopčinović LM, Pancirov D, Čepelak I GT. Paraoxonase 1 Activity in Patients with Chronic Obstructive. COPD J Chronic Obstr Pulm Dis. 2014:539-545. doi:10.3109/1541 2555.2014.898028
7. J.-I. Y, Y.-C. H. Review of epidemiology, diagnosis, and treatment of osteosarcopenia in Korea. J Bone Metab. 2018;25(1):1-7. doi:10.11005/jbm.2018.25.1.1
8. Fernandez-garcia JC. Inflammation , Oxidative Stress and Metabolic Syndrome : Dietary Modulation Inflammation , Oxidative Stress and Metabolic Syndrome : Dietary Modu-. 2013;(February 2016):906-919. doi:10.2174/15701611113116660175
9. Barreiro E, Fermoselle C, Mateu-Jimenez M, et al. Oxidative stress and inflammation in the normal airways and blood of patients with lung cancer and COPD. Free Radic Biol Med. 013;65:859871. doi:10.1016/j.freeradbiomed.2013.08.006
10. Sepúlveda Loyola WA, Vilaça Cavallari Machado F, Araújo de Castro L, et al. Is oxidative stress associated with disease severity, pulmonary function and metabolic syndrome in chronic bstructive pulmonary disease? Rev Clin Esp. June 2019. doi:10.1016/j.rce.2019.04.007
11. Katarina Sebekova, Boor P, Valanchovicova M, et al. Association of metabolic syndrome risk factors with selected markers of oxidative status and microinflammation in healthy omnivores and
egetarians. Mol Nutr Food Res. 2006;50(9):858-868. doi:10.1002/mnfr.200500170
12. Sepúlveda-loyola W, Sergio P, Probst S. Mecanismos fisiopatológicos de la sarcopenia en la EPOC. Rev Chil Enferm Respir. 2019;35(2):124-132.
13. Powers SK, Morton AB, Ahn B, Smuder AJ. Redox control of skeletal muscle atrophy. Free Radic Biol Med. 2016;98:208-217. doi:10.1016/j.freeradbiomed.2016.02.021
14. A. F, V.M. C, F. P, W. M. Molecular and cellular mechanisms of skeletal muscle atrophy: An update. J Cachexia Sarcopenia Muscle. 2012;3(3):163-179. doi:10.1007/s13539-012-0074-6
15. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2018;(1):1-16. doi:10.1093/ageing/afy169
16. Moreira PL, Boas PJFV, Ferreira ALA. Association between oxidative stress and nutritional status in the elderly. Rev Assoc Med Bras. 2014;60(1):75-83.
17. Tureck C, Locateli G, Corrêa VG, Koehnlein EA. Avaliação da ingestão de nutrientes antioxidantes pela população brasileira e sua relação com o estado nutricional. Rev Bras Epidemiol.
2017;20(1):30-42. doi:10.1590/1980-5497201700010003
18. Radak Z, Zhao Z, Koltai E, Ohno H AM. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox
Signal. 2013;18(10):1208-1246. doi:10.1089/ars.2011.4498
19. Fraile-Bermúdez AB, Kortajarena M, Zarrazquin I, Maquibar A, Yanguas JJ, Sánchez-Fernández CE, Gil J, Irazusta A R-LF. Relationship between physical activity and markers of oxidative stress in independent community-living elderly individuals. Exp Gerontol. 2015;70:26-31. doi:10.1016/j.exger.2015.07.005
20. Accattato F, Greco M, Pullano SA, et al. Effects of acute physical exercise on oxidative stress and inflammatory status in young , sedentary obese subjects. 2017:1-13.
21. Carraro E, Schilir T, Biorci F, et al. Physical Activity , Lifestyle Factors and Oxidative Stress in Middle Age Healthy Subjects. Int J Env Res Public Heal. 2018;15:1-11. doi:10.3390/ijerph15061152
22. Pitta F, Troosters T, Probst VS, Spruit MA, Decramer M, Gosselink R. Physical activity and hospitalization for exacerbation of COPD. Chest. 2006;129(3):536-544. doi:10.1378/chest.129.3.536
23. Gommans LNM, Hageman D, Jansen I, et al. Minimal correlation between physical exercise capacity and daily activity in patients with intermittent claudication. J Vasc Surg. 2016;63(4):983-989. doi:10.1016/j.jvs.2015.10.060
24. Witko-sarsat V, Friedlander M, Capeillere-blandin C, et al. Advanced uremia. Kidney int. 1996;49:1304-1313. doi:10.1038/ki.1996.186
25. Navarro-Gonzálvez JA, García-Benayas C, Arenas Joaquin. Semiautomated Measurement of Nitrate in Biological. Clin Chem. 1998;0022(3):679-681.
26. Repetto M, Reides C, Gomez Carretero ML, Costa M, Griemberg G, Llesuy S. Oxidative stress in blood of HIV infected patients. Clin Chim Acta. 1996;255(2):107-117.
oi:10.1016/00098981(96)06394-2
27. Miao-Lin Hu. Measurement of protein thiol groups and glutathione in plasma,. Methods Enzym. 1994;233:380-385.
28. Marklund S, Marklund G. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. Eur J Biochem. 1974;474:469-474.
29. Meng SJ, Yu LJ. Oxidative stress, molecular inflammation and sarcopenia. Int J Mol Sci. 2010;11(4):1509-1526. doi:10.3390/ ijms11041509
30. Rossen J, Yngve A, Hagströmer M, et al. Physical activity promotion in the primary care setting in pre- and type 2 diabetes - the Sophia step study, an RCT. BMC Public Health. 2015;15(1):647.
doi:10.1186/s12889-015-1941-9
31. Mancilla R, Torres P, Schifferli I, Sapunar J. Ejercicio físico interválico de alta intensidad mejora el control glicémico y la capacidad aeróbica en pacientes con intolerancia a la glucosa. 2014:34-39.
32. Galle FA, D M, G. B. Modulación antioxidante y antiinflamatoria del ejercicio físico durante el envejecimiento. Rev Esp Geriatr Gerontol. 2018;53:279-284. doi:10.1016/j.regg.2018.03.003
33. Carraro E, Schilir T, Biorci F, et al. Physical Activity , Lifestyle Factors and Oxidative Stress in Middle Age Healthy Subjects. Int J Env Res Public Heal. 2018;15:1-11. doi:10.3390/ijerph15061152
34. Soares AV, Marcelino E, Maia KC, Borges Junior NG. Relation between functional mobility and dynapenia in institutionalized frail elderly. Einstein (São Paulo). 2017;15(3):278-282. doi:10.1590/s1679-45082017ao3932
35. McKee A, John E. Morley, Matsumoto AM. Sarcopenia: an edocrine disorder? Endocr Pr. 2017;23:1140-1149. doi:10.4158/EP171795. RA
36. Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;Volume 13:757-772. doi:10.2147/ CIA.S158513
37. Kawamura T, Muraoka I. Exercise-Induced Oxidative Stress and the Effects of Antioxidant Intake from a Physiological Viewpoint. Antioxidants. 2018;7(119). doi:10.3390/antiox7090119
38. Control D, Medicine S. The role of exercise prescription in chronic disease. Br J Sport Med. 2004;38:6-7. doi:10.1136/ bjsm.2003.010314
39. Loyola WS, Camillo CA, Torres CV, Probst VS. Effects of an exercise model based on functional circuits in an older population with different levels of social participation. Geriatr Gerontol Int. 2017. doi:10.1111/ggi.13167
40. da Silva EM, Sepúlveda-Loyola W, Martins da Silva J, Castilho dos Santos G, Pereira C. Comparación entre simple y doble tarea, capacidad cognitiva y equilibrio postural en adultos mayoresque participan de 3 modalidades de ejercicio físico. Fisioterapia. 2019;(xx). doi:10.1016/j.ft.2019.10.002
41. Moreno G, Mangione CM, Wang PC, et al. Physical activity, physical performance, and biological markers of health among sedentary older Latinos. Curr Gerontol Geriatr Res. 2014;2014:1618. doi:10.1155/2014/535071
42. García WS, Vargas PC. Efecto de intervenciones con ejercicio y/o suplementación sobre la masa muscular de personas mayores con sarcopenia: un meta-análisis. PENSAR EN Mov Rev CIENCIAS DEL Ejerc Y LA SALUD. 2019;17.
43. Conzade R, Phu S, Vogrin S, et al. Changes in Nutritional Status and Musculoskeletal Health in a Geriatric Post-Fall Care Plan Setting. Nutrients. 2019;11:1-15.
44. Benedetti TRB, Antunes PDC, Rodriguez-añez CR. Reproducibility and validity of the International Physical Activity Questionnaire ( IPAQ ) in elderly men. Rev Bras Med do Esporte. 2007;13(1):9- 3. doi:10.1590/S1517-86922007000100004