Genomic imbalances at 9p24.1 locus in Argentine patients with classical Hodgkin lymphoma
PDF (Español (España))
HTML (Español (España))

Keywords

Hodgkin lymphoma
FISH
PD-L1/PD-L2 (Programmed cell death ligand 1-2)
gene expression

How to Cite

Narbaitz, M., Slavutsky, I., Pavlovsky, A., Metrebian, M. F., & García Montenegro, M. (2021). Genomic imbalances at 9p24.1 locus in Argentine patients with classical Hodgkin lymphoma. Médicas UIS, 34(1), 35–44. https://doi.org/10.18273/revmed.v34n1-2021004

Abstract

Background: Classical Hodgkin lymphoma shows scarce tumor Reed-Sternberg/Hodgkin cells surrounded by a dense immune microenvironment. Genetic alterations at the 9p24.1 locus result in genomic imbalances in the copy number of PD-L1/PD-L2 genes, both of them being immune response regulators. Aim: To characterize genomic imbalances at the 9p24.1 locus in Reed-Sternberg/Hodgkin cells and immune microenvironment in biopsies of patients with Classical Hodgkin lymphoma and correlate it with PD-L1 protein expression and disease presentation. Material and Methods: Paraffin embedded biopsies of 22 patients with CHL were retrospectively evaluated by fluorescence in situ hybridization using SPEC CD274/PDCD1LG2/CEN9 DNA probe. The frequency of 9p24.1 alterations, amplification, copy gain and polysomy, were determined taking into account the number of gene copies with respect to the centromere. D-L1 protein which are differentiated in two groups: with amplification (32%) and without amplification (68%). The latter was subdivided into rich in gains (RG) (53%) and rich in polysomies (RP) (47%). Groups with amplification and RG were younger than the RP group (p = 0.027). The latter was not associated with bulky disease, a fact observed in 40% of patients with amplification and RG. Protein expression showed
score +3 only in the latter. All RP cases presented chromosome 9 monosomy in the surrounding lymphocytes, compared to 36.4% of the other two groups. Conclusions: Our data contributes to the biologic  haracterization of CHL, of interest in the context of new therapeutic modalities.

https://doi.org/10.18273/revmed.v34n1-2021004
PDF (Español (España))
HTML (Español (España))

References

Shanbhag S, Ambinder RF. Hodgkin Lymphoma: A review and update on recent progress. CA Cancer J Clin. 2018;68(2):116-32. PubMed PMID: 29194581; PubMed Central PMCID: PMC5842098.

Pavlovsky A, Fernandez I, Kurgansky N, Prates V, Zoppegno L, Negri P, et al. PET-adapted therapy after three cycles of ABVD for all stages of Hodgkin lymphoma: results of the GATLA LH-05 trial. Br J Haematol. 2019;185(5):865-73. PubMed PMID: 30864146.

Ferlay J, Soerjomataram I, Ervik M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5): E359-86. PubMed PMID: 25220842.

Kusminsky G, Abriata G, Forman D, et al. Hodgkin lymphoma burden in Central and South America. Cancer Epidemiol. 2016;44 Suppl 1:S158-67. PubMed PMID: 27678318.

Siegel RL Miller KD, Jemal A. Cancer Statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34. PubMed PMID: 30620402.

Jaffe ES, Stein H, Swerdlow SH. Classic Hodgkin lymphoma. In: Swerdlow SH, Campo E, Harris NL, editors. WHO Classification

of Tumors of Hematopoietic and Lymphoid Tissues. Revised 4th ed. Lyon: IARC Press; 2017. p. 435-42.

Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016; 127(20):2375-90.

Hodgkin T. On some morbid appearances of the absorbent glands and spleen. Med. Chir. Trans. 1832;17:68-114

Mani H, Jaffe ES. Hodgkin lymphoma: an update on its biology with new insights into classification. Clin Lymph Res. 2009;9(3):206-16.

Küppers R. The biology of Hodgkin’s lymphoma. Nat Rev Cancer. 2009;9(1):15-27.

Younes A, Santoro A, Shipp M, Zinzani PL, Timmerman JM, Ansell S, et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. The Lancet Oncol. 2016;17(9):1283-94.

Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372:311-9.

Liu Y, Sattarzadeh A, Diepstra A, Visser L, van den Berg A. The microenvironment in classical Hodgkin lymphoma: an actively shaped and essential tumor component. Semin Cancer Biol. 2014;24:15-22.

Aldinucci D, Celegato M, Casagrande N. Microenvironmental interactions in classical Hodgkin lymphoma and their role in promoting tumor growth, immune escape and drug resistance. Cancer Lett. 2016;380(1):243-52.

Calabretta E, d’Amore F, Carlo-Stella C. Immune and inflammatory cells of the tumor microenvironment represent novel therapeutic targets in classical Hodgkin lymphoma. Int J Mol Sci. 2019;20(21):5503.

Hartmann S, Martin-Subero JI, Gesk S, Husken J, Giefing M, Nagel I, et al. Detection of genomic imbalances in microdissected Hodgkin and Reed-Sternberg cells of classical Hodgkin’s lymphoma by array-based comparative genomic hybridization. Haematologica. 2008;93(9):1318-26.

Steidl C, Telenius A, Shah SP, Farinha P, Barclay L, Boyle M, et al. Genome-wide copy number analysis of Hodgkin Reed- Sternberg cells identifies recurrent imbalances with correlations to treatment outcome. Blood. 2010;116(3):418-27.

Cuceu C, Hempel WM, Sabatier L, Bosq J, Carde P, M’Kacher R. Chromosomal instability in Hodgkin lymphoma: An in-depth review and perspectives. Cancers. 2018;10(4):91.

Erdkamp FL, Schouten HC, Breed WP, Janssen WC, Hoffmann JJ, Schutte B, et al. DNA aneuploidy in Hodgkin’s disease: a multiparameter flow cytometric analysis. Leuk Lymphoma. 1994;12 (3-4):297-306.

Jansen MP, Hopman AH, Haesevoets AM, Gennotte IA, Bot FJ, Arends JW, et al. Chromosomal abnormalities in Hodgkin’s disease are not restricted to Hodgkin/Reed-Sternberg cells. J Pathol. 1998;185(2):145-52.

Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O’Donnell E, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary

mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268- 77.

Roemer MG, Advani RH, Ligon AH, Natkunam Y, Redd RA, Homer H, et al. PD-L1 and PD-L2 Genetic Alterations Define Classical Hodgkin Lymphoma and Predict Outcome. J Clin Oncol. 2016;34(23):2690-7.

Joos S, Kupper M, Ohl S, von Bonin F, Mechtersheimer G, Bentz M, et al. Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res. 2000;60(3):549-52.

Rui L, Emre NC, Kruhlak MJ, Chung HJ, Steidl C, Slack G, et al. Cooperative epigenetic modulation by cancer amplicon genes. Cancer Cell. 2010;18(6):590-605.

Schmitz R, Hansmann ML, Bohle V, Martin-Subero JI, Hartmann S, Mechtersheimer G, et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med. 2009;206(5):981-9.

Lake A, Shield LA, Cordano P, Chui DTY, Osborne J, Crae S, et al. Mutations of NFKBIA, encoding IkBa, are a recurrent finding in classical Hodgkin lymphoma but are not a unifying feature of non-EBV-associated cases. Int J Cancer. 2009;125(6):1334-42.

Emmerich F, Theurich S, Hummel M, Haeffker A, Vry MS, Döhner K, et al. Inactivating I kappa B epsilon mutations in Hodgkin/Reed-Sternberg cells. J Pathol. 2003;201(3):413-20.

Tiacci E, Penson A, Schiavoni G, Ladewig E, Fortini E, Wang Y, et al. New Recurrently Mutated Genes in Classical Hodgkin Lymphoma Revealed by Whole-Exome Sequencing of Microdissected Tumor Cells. Blood. 2016;128(22):1088.

Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and Its Ligand in Tolerance and Immunity. Annu Rev Immunol. 2008;26(1):677-704.

Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD 1 Immunoinhibitory Receptor by a Novel B7 Family Member Leads to Negative Regulation of Lymphocyte Activation. J Exp Med. 2000;192(7):1027-34.

Konishi J, Yamazaki K, Azuma M, Kinoshita I, Dosaka-Akita H, Nishimura M. B7-H1 Expression on Non-Small Cell Lung Cancer Cells and Its Relationship with Tumor-Infiltrating Lymphocytes and Their PD-1 Expression. Clin Cancer Res. 2004;10(15):5094-100.

Thompson RH, Gillett MD, Cheville JC, Lohse CM, Dong H, Scott Webster W, et al. Costimulatory B7-H1 in renal cell carcinoma

subjects: Indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci USA. 2004;101(49):17174-9.

Ohigashi Y, Sho M, Yamada Y, Tsurui Y, Hamada K, Ikeda N, et al. Clinical Significance of Programmed Death-1 Ligand-1 and Programmed Death-1 Ligand-2 Expression in Human Esophageal Cancer. Clin. Cancer Res. 2005;11(8):2947-53.

Hino R, Kabashima K, Kato Y, Yagi H, Nakamura M, Honjo T, et al. Tumor Cell Expression of Programmed Cell Death-1

ligand 1 Is a Prognostic Factor for Malignant Melanoma. Cancer. 2010;116(7):1757-66.

Roosbroeck KV, Ferreiro JF, Tousseyn T, van der Krogt J-A, Michaux L, Pienkowska-Grela B, et al. Genomic Alterations of the JAK2 and PDL Loci Occur in a Broad Spectrum of Lymphoid Malignancies. Genes Chromosom Cancer. 2016;55(5):428-41.

Chapuy B, Roemer MGM, Stewart C, Tan Y, Abo RP, Zhang L, et al. Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood. 2016;127(7):869-81.

Cheng Z, Dai Y, Wang J, Shi J, Ke X, Fu L. High PD-L1 expression predicts poor prognosis in diffuse large B-cell lymphoma. Ann Hematol. 2018;97(6):1085-8.

Garaicoa FH, Roisman A, Arias M, Trila C, Fridmanis M, Abeldaño A, et al. Genomic imbalances and microRNA transcriptional profiles in patients with mycosis fungoides. Tumor Biol. 2016;37(10):13637-47.

Kinch A, Sundström C, Baecklund E, Backlin C, Daniel M, Enblad G. Expression of PD-1, PD-L1, and PD-L2 in posttransplant lymphoproliferative disorder after solid organ transplantation. Leuk Lymphoma. 2019;60(2):376-84.

Chen BJ, Chapuy B, Ouyang J, Sun HH, Roemer MGM, Xu ML, et al. PD-L1 Expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res. 2013;19(13):3462-73

Paydas S, Bağır E, Seydaoglu G, Ercolak V, Ergin M. Programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), and EBVencoded RNA (EBER) expression in Hodgkin lymphoma. Ann Hematol 2015;94(9):1545-52.

Meignan M, Gallamini A, Haioun C. Report on the First International Workshop on interim-PET-scan in lymphoma. Leuk Lymphoma. 2009;50(8):1257-60.

Menter T, Bodmer-Haecki A, Dirnhofer S, Tzankov A. Evaluation of the diagnostic and prognostic value of PDL1 expression in Hodgkin and B-cell lymphomas. Hum Pathol. 2016;54:17-24.

Koh YW, Jeon YK, Yoon DH, Suh C, Huh J. Programmed death 1 expression in the peritumoral microenvironment is associated

with a poorer prognosis in classical Hodgkin lymphoma. Tumor Biol. 2016;37(6):7507-14.

Hollander P, Kamper P, Ekstrom Smedby K, Enblad G, Ludvigsen M, Mortensen J, et al. High proportions of PD-1 + and PD-L1 + leukocytes in classical Hodgkin lymphoma microenvironment are associated with inferior outcome. Blood Adv. 2017;1(18):1427-39.

Carey CD, Gusenleitner D, Lipschitz M, Roemer MGM, Stack EC, Gjini E, et al. Topological analysis reveals a PD-L1-associated microenvironmental niche for Reed-Sternberg cells in Hodgkin lymphoma. Blood. 2017;130(22):2420-30.

Falzetti D, Crescenzi B, Matteuci C, Falini B, Martelli MF, Van Den Berghe H, et al. Genomic instability and recurrent breakpoints are

main cytogenetic findings in Hodgkin’s disease. Haematologica. 1999;84(4):298-305.

M’Kacher R, Girinsky T, Koscielny S, Dossou J, Violot D, Beron-Gaillard N, et al. Baseline and treatment-induced chromosomal abnormalities in peripheral blood lymphocytes of Hodgkin’s lymphoma patients. Int J Radiat. Oncol Biol Phys.

;57(2):321-6.

Barrios L, Caballin MR, Miro R, Fuster C, Berrozpe G, Subias A, et al. Chromosome abnormalities in peripheral blood lymphocytes

from untreated Hodgkin’s patients. A possible evidence for chromosome instability. Hum Genet. 1988;78(4):320-4.

Salas C, Niembro A, Lozano V, Gallardo E, Molina B, Sanchez S, et al. Persistent genomic instability in peripheral blood lymphocytes from Hodgkin lymphoma survivors. Environ. Mol. Mutagen. 2012;53(4):271-80.

Mata E, Díaz-López A, Martín-Moreno AM, Sánchez-Beato M, Varela I, Mestre MJ, et al. Analysis of the mutational landscape of classic Hodgkin lymphoma identifies disease heterogeneity and potential therapeutic targets. Oncotarget. 2017;8(67):111386-95.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 Médicas UIS

Downloads

Download data is not yet available.